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Payables finance, also known as reverse factoring or supply chain finance, is a form of trade finance arrange-

ment that provides a supplier with the option to receive a buyer’s payables early while allowing the buyer to

extend its payment due date. The recent adoption of the blockchain technology has the potential to make

payables finance more efficient and secure. In this paper, we study the supplier’s optimal cash policy under

such a “frictionless” payables finance arrangement. Our work extends the classic cash flow management

literature in two fronts: 1) we introduce the salient features of payables finance into the cash flow problem;

and 2) we consider a more realistic integrated cash balance model, that is, all interest gains and costs are

allowed to accrue together with the cash balance in a single sum. We find the optimal cash policy possesses

the “non-borrow-up-to” and “non-invest-down-to” features that differ from the classic (L,U) policy known

in the literature. We further quantify the value of payables finance to the supplier and determine the equilib-

rium payment term extension for the buyer. We show that it is the cash liquidity enabled by payables finance

to hedge against cash flow uncertainty that generates value to the supplier. To tackle the computational

challenge of the problem, we derive easy-to-compute heuristic policies and system bounds. Numerical studies

show that heuristic policies achieve near-optimal performance. Finally, we present results from applying our

model to a data set obtained from a major US chemicals company.
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1. Introduction

Payables finance, also known as reverse factoring or supply chain finance, has seen a wide adoption

by companies over the past decade.1 A recent McKinsey report projected a broader adoption

of payables finance in industry, with an estimated $2 trillion in readily financeable payables in

supply chains (Herath 2015). According to the description by Global Supply Chain Finance Forum

(2020), “[payables finance] provides a seller of goods or services with the option of receiving the

discounted value of receivables (represented by outstanding invoices) [from a third-party financial

1 We adopt the term “payables finance” by following the name convention set by Global Supply Chain Finance Forum

(2020)—“this technique is subject to a number of naming conventions, as is clear from the number of synonyms

recorded; the Forum decided that the term Payables Finance is a generic and neutral expression that captures the

essence of the technique.”
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intermediary] prior to their actual due date and typically at a financing cost aligned with the

credit risk of the buyer. The payable continues to be due by the buyer until its due date.” The

arrangement is settled on the due date when the financed portion is repaid by the buyer to the

financial intermediary (such as a bank or a FinTech platform).

According to Bonzani et al. (2018), with payables finance, small suppliers could lower their cost

of financing by 30% on average. Such supplier benefit also allows buyers to negotiate extension

of payment terms, further freeing up working capital for buyers. For example, it was estimated

that Proctor & Gamble could free up as much as $2 billion in cash by extending its payment

terms from 45 days to 75 days under payables finance (Ng 2013). In 2019, Keurig Dr Pepper, a

major US coffee and soda manufacturer, was able to extend its payment terms up to 360 days

and defer payments worth $2.1 billion under payables finance (Eaglesham 2020). In addition,

third-party financial intermediaries can earn extra interest revenue by facilitating payables finance

arrangements between suppliers and buyers. As such, payables finance enables a “win-win-win

solution” for all three parties involved in the arrangement (Esty et al. 2017).

There is a recent wave of adoption of the blockchain technology in payables finance implemen-

tation, where a distributed, decentralized public ledger is used to record transactions that are

immutable and can be transparent to all parties involved. For example, Ledger Insights (2018a)

reported that Ant Duo-Chain, a subsidiary of Ant Group (who owns China’s largest digital pay-

ment platform Alipay), applied the blockchain technology to payables finance and was able to

help small suppliers receive payment within a second, which dramatically shortened the traditional

three month payment period for such suppliers. It also estimated that traditional payables finance

service could only finance about 15% of suppliers, but with blockchain technology, it could expand

the service to about 85% of suppliers. Tencent, Ant Group’s main rival in China, also announced

the launch of WeChain, a blockchain-based payables finance platform for small and medium-sized

enterprises (Buck 2019). The promise of the blockchain technology appears to make payables

finance more efficient and secure, enabling frictionless transactions among all parties involved.

In this paper, we focus on such a frictionless payables finance setting enabled by the blockchain

technology.

Cash flow management is often regarded as the foundation of financial stability (Thangavelu

2021, Asif 2021). Poor cash flow management can lead to insufficient cash reserves, excess debit,

and increased risk of putting small companies out of business. The COVID-19 pandemic has made

cash flow management even more critical. Many firms faced heightened cash flow uncertainty due

to large cash flow shock, arisen from random loss from operations and/or unpaid/late scheduled

invoice payments during the pandemic (Shen 2020). According to Corporate Cash Management
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Playbook (2021), 54% of CFOs considered cash flow management a top challenge, especially for

the small suppliers considered in this paper.

Despite the growing importance of payables finance for small suppliers, as well as the potential

of its blockchain implementation in reaching greater number of suppliers, our understanding of the

supplier’s cash flow management under a frictionless payables finance arrangement is still quite

limited. In this paper, we focus on studying the following two research questions: First, what is the

supplier’s optimal cash management policy with payables finance? Second, how can we quantify

the value of payables finance to the supplier and also determine the equilibrium payment term

extension for the buyer in the frictionless blockchain setting?

Specifically, we consider a supplier who faces a random cash flow before the payment due date

of the payables finance arrangement. In each period, the supplier can either raise cash level by

drawing from payables finance and/or borrowing additional short-term loans, or lower cash level by

investing to earn risk-free interest. The adjusted cash level is used to meet the random cash outflow

in the period, subject to potential cost penalty if the ending balance is negative. The supplier’s

objective is to maximize its discounted total cash balance at the end of the payment due date.

We show that this problem can be transformed into a cash flow cost minimization problem with a

dynamic program formulation.

In the classic random cash flow literature (e.g., Eppen and Fama 1969, Neave 1970, Chen and

Simchi-Levi 2009), a simplifying assumption was adopted such that the interest gains and costs

are accrued and evaluated in a separate account from the cash balance itself. Such a decoupling

assumption makes the cash flow problem more tractable in certain model settings. However, we

find that it does not make the optimal policy in our payables finance problem more amenable for

computation, suggesting that the problem complexity stems from the payables finance arrangement

itself.

To reveal new insights about the cash flow management problem, we take a step further to relax

the decoupling assumption by considering a more realistic integrated cash balance model, that is,

all interest gains and costs are allowed to accrue together with the cash balance in a single sum.

We find that the convexity property found in the classic cash flow management models continues

to hold in our integrated cash balance model, but the optimal cash policy does not have the

simple “borrow-up-to” and “invest-down-to” features as in the classic (L,U) policy. Instead, the

optimal cash policy possesses the “non-borrow-up-to” and “non-invest-down-to” features, which

resemble the “non-order-up-to” optimal policy found in the classic random yield problem (Henig

and Gerchak 1990). The intuition is that the future cash balance in our problem depends on both

the current cash level decision and the initial cash balance before adjustment, which is similar to
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the random yield problem where there is dependence between future inventory level and the initial

inventory level before ordering.

We further derive qualitative insights about the value of payables finance. Our analysis reveals

that it is the cash liquidity enabled by payables finance to hedge against cash flow uncertainty

that generates value to the supplier, and such value increases with a lower payables finance interest

rate and/or a higher payables finance amount. We also find that suppliers with higher short-term

borrowing interest rates and/or higher cash flow uncertainty gain more value from the payables

finance arrangement. These insights are consistent with industry reports that payables finance

helps improve the financial sustainability of small suppliers by injecting additional liquidity into

their trade finance needs (Wood 2019), and provide theoretical support for the wide adoption of

payables finance for small suppliers with poor credit ratings and high cash flow uncertainty (PwC

& Supply Chain Finance Community 2019). Moreover, the adoption of the blockchain technol-

ogy in payables finance offers the promise to further improve the efficiency of invoices process-

ing and reduce the risk of fraud, leading to a lower payables finance interest rate and a higher

payables finance amount through wider adoption (Bain 2019). Thus, our model findings suggest

that blockchain-based payables finance services are likely to offer greater value to small suppliers.

Regarding the equilibrium payment term extension for the buyer, we show that it is determined

by the break even point between the value provided by payables finance and the cost increase to the

supplier due to the delayed payment. The equilibrium payment extension increases as the payables

finance interest rate decreases. Thus, the adoption of the blockchain technology, if it helps further

lower the payables finance interest rate, may lead to longer payment extensions for the buyer in

equilibrium. We also find that when the supplier’s cash flow uncertainty is high, the buyer can ask

for a longer payment extension. Interestingly, unlike the value of payables finance for the supplier,

the equilibrium payment extension can be either increasing or decreasing in the payables finance

amount, depending on the cash flow uncertainty the supplier faces. This result suggests that as the

payables finance amount increases through wider adoption, the buyer may not necessarily always

achieve longer payment extension in equilibrium (assuming that the payables finance interest rate

remains unchanged).

Quantifying the value of payables finance and determining the equilibrium payment term exten-

sion both requires evaluating the optimal cash flow cost in our model. However, as discussed above,

the “non-borrow-up-to” and “non-invest-down-to” features of the optimal cash policy greatly com-

plicate the computation because one needs to compute the optimal cash levels for all beginning

cash balance along all possible sample paths. To tackle this challenge, we derive an easy-to-compute

heuristic policy termed the “approximate policy” based on an approximate dynamic program
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formulation, where the value function of the approximate dynamic program can serve as an easy-

to-compute system cost lower bound for the original problem. This system cost lower bound can

be further used in place of the original optimal cost function for performance evaluation purposes.

We also derive the myopic policy for the original problem as a benchmark for comparison.

Our numerical study shows that both the approximate policy and the myopic policy achieve

near-optimal performance in the original problem, with the approximate policy performing signifi-

cantly better than the myopic policy across all experimental parameter scenarios. Given the strong

performance of the approximate policy, we apply it along with the system cost lower bound to

obtain lower bounds for the value of payables finance to the supplier and the equilibrium payment

term extension for the buyer. Finally, we apply our model to a data set obtained from a major US

chemicals company to estimate the value of payables finance to its suppliers and the equilibrium

payment term extension it can achieve. Our analysis suggests that the payables finance arrange-

ment can provide cost savings up to about 17% of the invoice amount for the firm’s suppliers, and

that the estimated payment extension for the firm ranges from 90 days to two years.

The rest of this paper is organized as follows. We review the related literature in §2. In §3, we

present the random cash flow model for the supplier, derive the optimal cash policy, quantify the

value of payables finance, and study the equilibrium payment term extension for the buyer. In §4

we study several heuristic policies for the problem and propose an easy-to-compute system cost

lower bound. §5 contains our numerical studies with some real data applications, followed by §6

for concluding remarks. All proofs of our results are found in the Online Appendix.

2. Literature Review

Supply chain finance has been studied from various perspectives in the literature. Seifert and

Seifert (2009) provided a high-level managerial assessment for supply chain finance. Randall and

Farris (2009) used simple financial ratios to show the benefits of supply chain finance to all parties

involved. Tanrisever et al. (2012) developed a model to show how supply chain finance influences

the operational and financial decisions of supply chain parties. Using a single-period make-to-order

and make-to-stock model, they determined the conditions under which the supply chain finance

contract creates value for all parties. Tunca and Zhu (2018) considered a game-theoretical model

for supplier finance and estimated the profits improvement with supplier finance based on empirical

data from a Chinese online retailer. Their model assumes that the buyer sets the supplier finance

interest rate without requesting payment extension and it does not consider cash flow uncertainty.

Hu et al. (2018) considered another game-theoretical model involving supply chain finance, with

a focus on the overall financing costs of the supply chain. In their model, the supplier pays the

buyer (instead of the bank) an exogenous interest rate for an early withdrawal. More recently,
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Kouvelis and Xu (2021) developed a supply chain theory of factoring and reverse factoring to show

when these post-shipment financing schemes should be adopted and who really benefits from the

adoption. They considered a single-period setting and built upon the newsvendor financing model

incorporating firms’ credit ratings and liquidity risks. Babich and Hilary (2020) discussed various

research opportunities in applying the blockchain technology to supply chain finance. Our paper

contributes to this growing literature by providing solutions for quantifying the value of payables

finance over multiple periods and the equilibrium payment term extension for the buyer.

A firm’s future cash flow is usually difficult to forecast in practice (Gao 2018, Nallareddy et al.

2020), which motivates the random cash flow model considered in our paper. Our random cash

flow model is closely related to the classic cash flow management literature (see Kallberg et al.

1982, for a review). In a seminal paper, Miller and Orr (1966) considered a discrete-time random

walk model for firm’s cash demand along with a two-parameter control limit policy. Eppen and

Fama (1969) showed that the optimal cash management policy for a proportional cost model is

an (L,U) threshold policy. Neave (1970) further extended the cash management model to include

fixed transaction costs. An analysis of the continuous-time model with Brownian motion cash flow

and fixed transaction costs can be found in Constantinides (1976) and Harrison (2013). Chen

and Simchi-Levi (2009) showed that the concepts of symmetric K-convexity and (K,Q)-convexity

developed in the inventory control literature can be used to characterize the optimal policy for the

cash management model with fixed transaction cost. A common assumption in these models is that

the cash balance evolves in a separate account without being affected by the interest gains and

costs. Under this assumption, the cash management problem becomes mathematically equivalent

to an inventory control problem. In fact, a more general state-dependent (L,U) threshold policy is

shown to be optimal in inventory control problems with information updates for fashion products

(Eppen and Iyer 1997) and spare parts systems (Chen et al. 2017). In our paper, by contrast, we

consider a more realistic integrated cash balance model that allows all the interest gains and costs

to accrue together with the cash balance in a single sum. We find the optimal cash policy possesses

the “non-borrow-up-to” and “non-invest-down-to” features that resemble the “non-order-up-to”

optimal policy found in the classic random yield problem (Henig and Gerchak 1990).

Our paper also contributes broadly to the stream of research on how financing arrangements

affect supply chain operations. Gupta and Wang (2009) studied the impact of trade credit on

supply chain contracting and inventory management. In a game-theoretical model, Kouvelis and

Zhao (2018) presented a trade credit contract model where the interactions between the supplier

and retailer are modeled as a Stackelberg game, and studied the impact of credit ratings on

operational and financial decisions of a supply chain. Chen et al. (2021) studied the impact of trade

credit on small businesses and their suppliers under a multiple-period setting, based on which they
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studied the expansion and inventory policies of the retailer under risk control. The payables finance

arrangement considered in our paper differs from the trade credit or debt arrangements considered

in the aforementioned papers. First, as described in the introduction, payables finance involves

three parties, whereas trade credit or debt arrangement typically involves just two parties (such

as a supplier and a buyer, or a supplier and a bank). Second, the supplier enjoys more flexibility

regarding when and how much to receive the payment owed by the buyer under payables finance

than under trade credit. Third, payables finance uses the supplier’s invoice (receivables) as the

collateral for financing, so the default risk is considerably lower than the bank lending directly to

the supplier.

3. Model and Analysis

Consider a supply chain with a small supplier and a large buyer. The buyer, being larger and

more solvent, enjoys a higher credit rating (or lower bank borrowing interest rate) than does the

supplier. When the buyer orders from the supplier for goods worth W dollar value, under a common

fixed-term arrangement the buyer can pay the supplier within N periods (e.g., days or weeks) after

receiving the goods. In this case, the buyer, while having the option to pay the supplier sooner,

will always pay on the due date because of the time value of money. To be clear, we refer to the

due date N as the end of period N throughout the paper.

A payables finance arrangement is intended to replace the common fixed-term arrangement, with

the aim to allow the supplier to receive the payment sooner while possibly further extending the

payment due date for the buyer. According to Global Supply Chain Finance Forum (2020), the

payables finance arrangement has the following sequence of events: (1) the supplier sends an invoice

with amount W and due date N to the buyer after delivering goods or services; (2) the buyer

approves the invoice and notifies the bank; (3) the supplier decides whether or not to request an

early payment for a portion or all of W from the bank; (4) if an early payment is requested by the

supplier, the bank will review and approve the requested amount, and also discount the amount

with a predetermined interest rate ρ from the request date to the due date; and, finally, (5) on due

date N (i.e., at the end of period N), the buyer pays the financed portion of W to the bank and

the remaining portion (if any) to the supplier (see Figure 1 for a step-by-step illustration). We note

that the payables finance service described above can be offered by either banks or blockchain-

based FinTech platforms (De Meijer 2017). In fact, several major banks in China have recently

launched their own blockchain-based payables finance platforms (Ledger Insights 2018b). For ease

of reference, we shall simply refer to the payables finance service provider as “the bank” henceforth.

Let ρc denote the period-to-period discount interest rate, which can be viewed as the risk-free

interest rate in each period (Li et al. 2013). The corresponding discount factor is denoted by
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SUPPLIER BUYER
1. Supplier submits the invoice 

to buyer with amount and 
due date 

2. Buyer approves and 
notifies bank of the 
invoice

3. Supplier requests an early 
payment from bank for a 
portion of 

4. Bank pays the requested 
amount to supplier with 
discount rate 

5a). Buyer pays bank the 
financed portion of 
on due date 

5b). Buyer pays supplier the 
remaining portion of 
(if any) on due date 

Bank and/or FinTech Platform 
(such as enabled by blockchain)

Figure 1 Sequence of events under payables finance.

δ = 1/(1 + ρc). Both the buyer and the supplier have access to short-term loans, with borrowing

interest rate ρi, with i ∈ {b, s} (where “b” stands for buyer and “s” stands for supplier). We

assume that ρc <ρb <ρs, reflecting the credit-rating dependent borrowing rates for the buyer and

the supplier (see Kouvelis and Zhao 2018, for a similar assumption). Clearly, since the buyer is

effectively “borrowing” the financed portion of W from the bank with the promise to repay the

portion on due date N , the bank would charge an interest rate for payables finance with ρ≥ ρb.
We shall assume this holds throughout the paper.

To keep things simple, consider a finite-horizon random cash flow problem for the supplier up

to the payables finance payment due date N . The periods are numbered forward as n= 1,2, ...,N ,

with period N + 1 being the terminal period. For ease of exposition, we assume that the supplier

faces an independent and identically distributed random cash flow ξn in each period n (we note

that our analysis can be generalized to the case of independent but non-stationary cash flow). The

random cash flow can be a result of the profit or loss from serving a random customer demand

or the unexpected delayed payment from customers during a period. When ξn > 0, it represents a

net cash outflow ; and when ξn < 0, it represents a net cash inflow. The mean of the random cash

flow in each period is denoted by µ = E[ξn] ≤ 0, so that the supplier on average has a negative

net cash outflow, or, equivalently, a positive net cash inflow in each period. Also let f(·) and F (·)
denote the probability density function (PDF) and cumulative distribution function (CDF) of ξn,

respectively.

At the beginning of period n, the supplier has an initial on-hand cash balance xn. Also let wn be

the net cash amount (after discounting) available to the supplier to draw from payables finance.
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The initial balances are given by x1 =X and w1 = (1 + ρ)−NW , where W is the initial payables

finance amount expected on due date N .

Figure 2 Timeline for the supplier cash flow problem.

Before the random cash flow is realized in a period n, the supplier determines a cash level yn

to meet the cash demand (see Figure 2 for an illustration). If the supplier chooses to keep a high

cash level, it will use the available cash balance including the net cash amount wn from payables

finance and additional short-term loans if necessary. Note that, the maximum level that can be

achieved without any additional short-term loans is xn + wn, where the supplier will withdraw

all the net cash amount wn from payables finance. To make the withdrawing decisions consistent

with empirical observations in practice, we assume that the supplier’s short-term loan interest rate

is sufficiently high, such that it is optimal for the supplier to draw from payables finance before

resorting to additional short-term loans (Esty et al. 2017, Tunca and Zhu 2018).2

On the other hand, if the supplier chooses to keep a cash level yn below xn, the excess amount

(xn − yn) is invested to earn a risk-free interest rate ρc. We assume that cash adjustment and

investment are achieved immediately and there is no fixed transaction fee, reflecting the frictionless

transactions enabled by the blockchain technology (Ledger Insights 2018a). The same assumption

has also been adopted in the literature to enhance analytical tractability (Eppen and Fama 1969,

Li et al. 2013).

The cash balance after netting the random cash flow in a period is yn − ξn. If the balance is

negative, the supplier needs to pay an extra interest cost ρd(ξn − yn)+, where (x)+ = max{x,0}

and ρd >ρs is the penalty interest rate for the negative ending balance before the supplier can act

2 A condition that meets this assumption is that ρs > δN−1(1 + ρ)N − 1, where the maximum present value of the

would-be interest gain of payables finance is less than the present value of interest cost of using additional short-term

loans. Note that, when N = 1, the condition reduces to ρs > ρ.
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upon it at the beginning of the next period.3 Thus, the supplier has incentive to borrow additional

short-term loans at the beginning of a period to avoid the potential costly cash shortfall at the end

of the period.

In the classic random cash flow literature (e.g., Eppen and Fama 1969, Neave 1970, Chen and

Simchi-Levi 2009), a simplifying assumption was adopted such that the interest gains and costs

are accrued and evaluated in a separate account from the cash balance itself. Such a decoupling

assumption makes the cash flow problem more tractable in certain model settings. However, we

find that it does not make the optimal policy in our payables finance problem more amenable for

computation (see a detailed discussion in Appendix B). In what follows, we relax this decoupling

assumption by considering a more realistic integrated cash balance model, that is, all interest gains

and costs are allowed to accrue together with the cash balance in a single sum. We seek to reveal

new insights about the cash flow management problem under this relaxed assumption.

3.1. Integrated Cash Balance Model

Under the integrated cash balance model, the on-hand cash balance in period n+1 (with 1≤ n≤N)

can be written as

xn+1 = yn− ξn− ρd(ξn− yn)+ + (1 + ρc)(xn− yn)+− (1 + ρs)(yn−xn−wn)+, (1)

where the third term is the extra interest cost paid to cover the temporary cash shortfall (if any),

the fourth term is the risk-free interest return from investments (if any), and the last term is the

interest cost of using additional short-term loans (if any) after the supplier withdraws all available

amount from payables finance.4 We note that the interest gains and costs in these last three terms

are not accounted for in the on-hand cash balance transition under the decoupling assumption in

the classic random cash flow literature.

Consider next the payables finance balance wn+1. Because the balance is a discounted amount

after netting the interest payment (with rate ρ) to the bank, the unused balance is effectively

earning interest with rate ρ until due date N . Recall that ρc < ρ. This implies that the supplier

would never draw from payables finance meanwhile investing money to earn risk-free interest.

In other words, the supplier would draw from payables finance only if the desired cash level yn

exceeds the available cash balance xn. Moreover, after withdrawing all the net cash amount wn

3 Alternatively, ρd can be also interpreted as the bankruptcy restructuring cost considered in Li et al. (2013). In our

model, we do not consider the wipe-out bankruptcy because our focus is on short-term cash operations. We further

note that the on-hand cash balance at the beginning of a period can be negative in our model, which represents

money being borrowed/financed under the short-term loans.

4 We note that the on-hand cash balance and payables finance balance are reviewed at the beginning of the terminal

period N + 1 before the remaining payables finance balance being transferred.
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from payables finance in this period, the supplier could use additional short-term loans at a higher

interest cost ρs, and the remaining payables finance balance wn+1 at the beginning of the next

period becomes zero. As a result, we can write wn+1 (with 1≤ n≤N) as

wn+1 = (1 + ρ)
[
wn− (yn−xn)+

]+
. (2)

We refer the reader to Table A.1 in Appendix A for a list of the notations used in the paper.

The objective for the supplier is to maximize the discounted total accrued cash balance (including

the payables finance balance) at the beginning of the terminal period N + 1, which is given by

Π(X,W ) = max
{y1,...,yN}

δNE [xN+1 +wN+1] , (3)

where {y1, ..., yN} is the unconstrained cash level policy for each period before the payment due

date N . With some term substitution and rearrangement, we can transform problem (3) into a

cost minimization problem as follows (see the proof in Appendix A):

Proposition 1. The following holds:

Π(X,W ) =X + δNW − δ− δ
N+1

1− δ
µ− δV1 (x1,w1) , (4)

where V1(x1,w1) is determined by the dynamic program: for 1≤ n≤N ,

Vn(xn,wn) =min
yn
{Gn(yn, xn,wn)}

=min
yn

{
ρcyn + ρdE

[
(ξn− yn)+

]
+ (γn(ρ)− ρc)min

{
(yn−xn)+,wn

}
+(ρs− ρc)(yn−xn−wn)+ + δE [Vn+1(xn+1,wn+1)]

}
, (5)

VN+1(·, ·) =0,

with γn(ρ) = δN−n(1+ρ)N−n+1−1, x1 =X, w1 = (1+ρ)−NW , and xn+1 and wn+1 given in (1) and

(2), respectively. Moreover, Vn(xn,wn) is decreasing in xn and wn.

Proposition 1 shows that the optimal discounted total cash balance Π(X,W ) consists of four

parts: (1) the initial cash balance X, (2) the present value of the payables finance amount δNW ,

(3) the present value of expected cash outflow
∑N

i=1 δ
iµ over N periods, and (4) the discounted cost

δV1 (x1,w1) due to cash flow uncertainty. If there is no cash flow uncertainty, i.e., ξn is deterministic,

then the supplier can set yn = 0 in each period to achieve a minimum cost of V1(·, ·) = 0. In this case,

the supplier would not make any early withdrawals from payables finance. On the other hand, if

the cash demand ξn is random, an early withdrawal from payables finance can help reduce the cash

flow cost V1. Therefore, to understand and quantify the value of the payables finance arrangement,

one needs to study the cost function V1 under cash flow uncertainty.
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The dynamic program objective function (5) contains five terms. The first term ρcyn is the

opportunity cost (or the forgone risk-free interest) of setting a cash level yn ≥ 0 to meet the random

cash flow.5 The second term ρdE [(ξn− yn)+] is the expected interest cost if the ending balance is

negative in the period. The third term (γn(ρ)− ρc)min{(yn−xn)+,wn} is the opportunity cost

of drawing the amount min{(yn−xn)+,wn} from payables finance, where γn(ρ) is the would-be

interest gain if the amount is kept unused until the due date (recall that the maximum amount in

each period n that can be withdrawn from payables finance is wn). The fourth term (ρs−ρc)(yn−

xn − wn)+ is the extra interest cost of using additional short-term loans. Finally, the last term

δE [Vn+1(xn+1,wn+1)] captures the (discounted) expected cost-to-go from period n+ 1 onward.

As shown in the proposition, the value function Vn(xn,wn) also possesses some monotonicity

property—it is decreasing in the cash balance xn and the available amount wn from payables

amount. Intuitively, increasing the supplier’s cash balance xn in a period helps reduce the chance

of early withdrawal from payables finance as well as using additional short-term loans, and also

reduce the cost-to-go for future periods. Similarly, increasing the available payables finance balance

wn in a period helps reduce the chance of using additional short-term loans and also reduce the

cost-to-go for future periods.

3.2. Optimal Cash Policies

According to the three respective decision cases of the dynamic program (5), i.e., yn ≤ xn, xn <

yn ≤ xn +wn, and yn >xn +wn, we can rewrite the objective function as follows.

Gn(yn, xn,wn) =


GU
n (yn, xn,wn) if yn ≤ xn,

GM
n (yn, xn,wn) if xn < yn ≤ xn +wn,

GL
n(yn, xn,wn) if yn >xn +wn,

(6)

where

GU
n (yn, xn,wn) = ρcyn + ρdE

[
(ξn− yn)+

]
+ δHU

n (yn, xn,wn), (7)

GM
n (yn, xn,wn) = γn(ρ)yn− (γn(ρ)− ρc)xn + ρdE

[
(ξn− yn)+

]
+ δHM

n (yn, xn,wn), (8)

GL
n(yn, xn,wn) = ρsyn− (ρs− ρc)xn− (ρs− γn(ρ))wn + ρdE

[
(ξn− yn)+

]
+ δHL

n (yn, xn,wn), (9)

with

HU
n (yn, xn,wn) =E

[
Vn+1((1 + ρc)xn− ρcyn− ξn− ρd(ξn− yn)+, (1 + ρ)wn)

]
, (10)

HM
n (yn, xn,wn) =E

[
Vn+1(yn− ξn− ρd(ξn− yn)+, (1 + ρ)(wn +xn− yn))

]
, (11)

5 We note that it is possible that yn < 0, e.g., when xn +wn < 0. In this case, there is an opportunity gain of ρcyn

due to leverage, but there could also be a much higher interest cost ρd if the ending balance is negative in the period.
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HL
n (yn, xn,wn) =E

[
Vn+1((1 + ρs)(xn +wn)− ρsyn− ξn− ρd(ξn− yn)+,0)

]
. (12)

We note that the expected cost-to-go functions H i
n(yn, xn,wn) for i∈ {U,M,L} is defined according

to the three decision cases yn ≤ xn, xn < yn ≤ xn +wn, and yn > xn +wn, respectively. Therefore,

the dynamic program (5) can be rewritten as a minimum of three cost minimization subproblems:

Vn(xn,wn)

= min
yn
{Gn(yn, xn,wn)}

= min

{
min
yn≤xn

{
GU
n (yn, xn,wn)

}
, min
xn<yn≤xn+wn

{
GM
n (yn, xn,wn)

}
, min
yn>xn+wn

{
GL
n(yn, xn,wn)

}}
.

Furthermore, let yin(xn,wn) for i ∈ {U,M,L} denote the unconstrained optimal solution to the

three subproblems, respectively. That is, for 1≤ n≤N , i∈ {U,M,L},

yin(xn,wn) = arg min
yn

{Gi
n(yn, xn,wn)}. (13)

We note that yin(xn,wn) is a function of the beginning cash balances xn and wn. To see this, recall

from the state transition equation (1), which can be written as

xn+1 =


(1 + ρc)xn− ρcyn− ξn− ρd(ξn− yn)+ if yn ≤ xn,

yn− ξn− ρd(ξn− yn)+ if xn < yn ≤ xn +wn,

(1 + ρs)(xn +wn)− ρsyn− ξn− ρd(ξn− yn)+ if yn >xn +wn.

(14)

It is clear that xn+1 is a function of yn and xn in all three cases. Similarly, it can be verified that

xn+1 + wn+1 is a function of yn, xn, and wn in all three cases. This implies that the first-order

derivative of H i
n(yn, xn,wn) with respect to yn is a function of xn and wn (the differentiability of

H i
n(yn, xn,wn) is verified in the proof of Proposition 2 in Appendix A). Hence, yin(xn,wn) is also a

function of xn and wn due to its dependence on the derivative of H i
n(yn, xn,wn).

By backward induction, we can first show the convexity of the three subproblem objective func-

tions and the convexity at two kink points yn = xn and yn = xn +wn. Combining the convexity

results leads to the convexity of the original objective function Gn(yn, xn,wn) in yn, xn, and wn.

This enables us to characterize the optimal cash policy (see the proof of Proposition 2 in Appendix

A). The results are summarized in the following proposition:

Proposition 2. For any 1≤ n≤N , the following hold:

(i) Gn(yn, xn,wn) is convex in yn;

(ii) There exist three critical levels Ln ≤Mn ≤ Un(wn) (where Ln and Mn do not depend on xn
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and wn, and Un(wn) is weakly increasing in wn), such that the optimal cash policy y∗n for

problem (5) is given by

y∗n =



yLn (xn,wn) if xn +wn <Ln,

xn +wn if Ln ≤ xn +wn <Mn,

yMn (xn,wn) if xn <Mn ≤ xn +wn,

xn if Mn ≤ xn <Un(wn),

yUn (xn,wn) if xn ≥Un(wn),

where yin(xn,wn) for i ∈ {U,M,L} is defined in (13). Moreover, both yLn (xn,wn) and

yMn (xn,wn) are functions of xn +wn only.

Proposition 2 establishes the convexity of the dynamic program objective function Gn(yn, xn,wn)

under the integrated cash balance model. The structure of the optimal cash policy features three

critical levels Ln ≤Mn ≤ Un(wn) (their definitions are found in Appendix A). Figure 3 provides

an illustration of the optimal policy. In each period n, first, if the available total cash balance

xn +wn (including the amount from payables finance) falls below a critical level Ln, the optimal

decision is to draw the maximum available amount from payables finance, and borrow the difference

yLn (xn,wn)− xn −wn through additional short-term loans, so that the optimal cash level can be

adjusted to yLn (xn,wn). Second, if the available total cash balance xn + wn falls in between the

critical levels Ln and Mn, the optimal decision is to raise the cash level up to xn +wn, by drawing

the maximum available amount from payables finance without using any additional short-term

loans. Third, if the available total cash balance xn+wn is above the critical level Mn while the on-

hand cash balance xn falls below Mn, the optimal decision is to draw the difference from payables

finance, so that the optimal cash level can be adjusted to yMn (xn,wn); no additional short-term

loans are borrowed. Fourth, if the on-hand cash balance xn falls in between the critical levels Mn

and Un(wn), the optimal cash level decision is to do nothing. Finally, if the on-hand cash balance

xn is above the critical level Un(wn), the optimal decision is to lower the cash level to yUn (xn,wn)

and invest the difference to earn a risk-free interest; no withdrawal is made from payables finance.

It is worth commenting that the critical level Un(wn) is increasing in wn. This implies that with a

higher payables finance amount wn, the supplier is less likely to invest the cash balance to earn a

risk-free interest.

We shall highlight that the optimal cash policy for our problem distinguishes from the simple

(L,U) policy in the classic cash flow literature (e.g., Eppen and Fama 1969) in the following

aspects. First, obviously, the optimal cash policy has a new middle cash level yMn (xn,wn) due to the

access of payables finance. Second and more importantly, the optimal cash policy does not have the
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Cash balance 

Figure 3 Illustration of optimal cash policy.

simple “borrow-up-to” and “invest-down-to” features as in the classic (L,U) policy. Instead, the

optimal cash level does not necessarily equal the corresponding critical level, i.e., yLn (xn,wn) 6=Ln,

yMn (xn,wn) 6=Mn, and yUn (xn,wn) 6= Un(wn), which makes the optimal policy resemble the “non-

order-up-to” optimal policy found in the classic random yield problem (Henig and Gerchak 1990).

The intuition behind this result is that the future cash balance in our problem depends on both

the current cash level decision and the initial cash balance before adjustment, which is similar to

the random yield problem where there is dependence between future inventory level and the initial

inventory level before ordering. This kind of “non-borrow-up-to” and “non-invest-down-to” features

greatly complicates the computation of the optimal cash policy because one needs to compute the

optimal cash levels for all beginning cash balance values.

One may wonder whether the “non-borrow-up-to” and “non-invest-down-to” features in the

optimal policy might go away if the interest gains and costs are decoupled from the cash balance in

our problem as in the classic cash flow literature. The answer turns out to be mixed (see Proposition

B.2 in Appendix B). With the decoupling assumption, we can show that the lower and upper

optimal cash levels will recover the classic (L,U) policy structure. However, the middle cash level

still follows a “non-borrow-up-to” policy structure. Therefore, the resulting optimal cash policy is

still challenging to compute. This shows that the complexity of our problem stems not only from

our more realistic integrated cash balance model but also from the payables finance problem itself.

In what follows, we derive some qualitative insights under the optimal cash policy for the value of

payables finance in §3.3 and then study the equilibrium payment term extension for the buyer in

§3.4.
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3.3. Value of Payables Finance

According to the optimal value function (4), we can measure how payables finance helps reduce the

supplier’s cash flow cost. This cost reduction becomes the value of payables finance to the supplier.

Consider first the case in which there is no payables finance arrangement. In this case, the initial

payables finance amount w1 = 0, but there is a scheduled cash amount W received on the payment

due date N . Let Π0(X,W ) denote the discounted total cash balance in this case, which can be

written as

Π0(X,W ) =X + δNW − δ− δ
N+1

1− δ
µ− δV1 (X,0) , (15)

where δNW is the present value of the cash amount received on the payment due date N . Define the

value of payables finance as Ψ = Π(X,W )−Π0(X,W ). Further write out the Π and Π0 functions

as shown in Proposition 1 and the definition (15). The value of payables finance can be written as

Ψ = δV1 (X,0)− δV1

(
X, (1 + ρ)−NW

)
≥ 0, (16)

where the last inequality follows from the monotonicity of w1 shown in Proposition 1. The following

proposition summarizes properties of the value of payables finance:

Proposition 3. The following hold:

(i) If cash demand ξn is deterministic, then Ψ = 0;

(ii) Ψ is decreasing in ρ and increasing in W .

Proposition 3(i) shows that without cash flow uncertainty, payables finance does not offer any

value to the supplier. In other words, it is the cash liquidity enabled by payables finance to hedge

cash flow uncertainty that generates value to the supplier. This insight is consistent with the

empirical observation that payables finance helps improve the financial sustainability of small

suppliers by injecting additional liquidity into their trade finance needs (Wood 2019). Proposition

3(ii) further shows that such value increases as the payables finance interest rate ρ decreases

and/or as the payables finance amount W increases. Intuitively, decreasing ρ reduces the cost of

withdrawing from payables finance, thus reducing the cash flow cost under payables finance. This

leads to greater cash flow cost savings compared to the no payables finance arrangement. Moreover,

having greater initial payables finance amount W allows the supplier to enjoy more cash liquidity

of withdrawing from payables finance, thus generating greater value to the supplier. The adoption

of the blockchain technology in payables finance offers the promise to further improve the efficiency

of invoices processing and reduce the risk of fraud, leading to a lower payables finance interest

rate and a higher payables finance amount through wider adoption (Bain 2019). Thus, our model

findings suggest that blockchain-based payables finance services are likely to offer greater value to

small suppliers.
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To further understand how the level of cash flow uncertainty influences the value of payables

finance, we consider a special case in which the payment due date N = 1 and the cash demand

follows a normal distribution. Let Φ(·) denote the standard normal CDF. Proposition 4 shows the

analytical results for this case.

Proposition 4. Suppose N = 1 and the random cash flow follows a normal distribution (µ,σ).

The following holds:

(i) Ψ is increasing in ρs;

(ii) Suppose ρd > 2ρs. Then Ψ is increasing in σ. Moreover, Ψ = 0 if σ ≤ (X − µ)/Φ−1
(
ρd−ρ
ρd

)
;

and Ψ = δ(ρs−ρ)
1+ρ

W if σ >
(
X −µ+ W

1+ρ

)
/Φ−1

(
ρd−ρs
ρd

)
.

Proposition 4(i) shows that the value of payables finance is increasing in the supplier’s additional

short-term loans borrowing rate ρs. When borrowing from additional short-term loans is costlier

to the supplier, payables finance becomes more valuable because of its relatively low interest rate.

In practice, small suppliers suffer from poor credit rating and have to pay high borrowing interest

cost. This result provides a theoretical explanation for why payables finance is widely adopted for

small suppliers located in emerging markets (PwC & Supply Chain Finance Community 2019).

Moreover, Proposition 4(ii) shows that when the interest cost of cash shortfall is relatively high

and when payment due date is relatively short, the value of payables finance is increasing in the

cash flow uncertainty level σ. Intuitively, as the cash flow uncertainty level increases, the supplier is

more likely to withdraw all funds from payables finance to avoid the potential costly cash shortfall.

Hence, payables finance becomes more valuable to the supplier. In addition, when the cash flow

uncertainty is low, it is optimal for the supplier not to draw from payables finance before the

payment due date. As a result, payables finance offers zero value to the supplier. On the other

hand, when cash flow uncertainty is high (which is usually the case for small suppliers), it is

optimal for the supplier to withdraw all payables finance immediately. In this case, the value of

payables finance is essentially the interest cost saved from borrowing solely from the short-term

loans. Therefore, the value of payables finance is proportional to the total amount W and interest

difference (ρs − ρ), and it does not depend on the supplier’s initial on-hand cash balance X, as

shown in the proposition.

3.4. Payment Term Extension

So far, we have studied the payables finance arrangement from the supplier’s perspective, i.e.,

determining the supplier’s optimal cash policy under payables finance as well as measuring the value

of payables finance to the supplier. In this section, we explore the payables finance arrangement

from the buyer’s perspective. Specifically, we study the maximum payment due date extension that
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the buyer can achieve under payables finance while ensuring the supplier’s participation based on

the optimal value function V1.

Clearly, a payment due date extension ∆ reduces the present value of the payment for the

supplier. As a result, the available cash amount for withdrawal from payables finance (after dis-

counting) reduces from w1 = (1 + ρ)−NW to w1 = (1 + ρ)−(N+∆)W . For simplicity, we assume that

the supplier will withdraw all funds from payables finance on the original due date N . Therefore,

the resulting discounted total cash balance is equivalent to Π(X, (1 + ρ)−∆W ). Define the value of

payables finance with the extension ∆ as

Ψ(∆) = Π(X, (1 + ρ)−∆W )−Π0(X,W ),

where Ψ(0) is the same as Ψ defined in the previous section. Further write out the Π and Π0

functions as shown in Proposition 1 and the definition (15). The value of payables finance with

payment term extension can be written as

Ψ(∆) =δ
[
V1 (X,0)−V1

(
X, (1 + ρ)−(N+∆)W

)]
− (1 + ρ)∆− 1

(1 + ρ)∆
δNW

=Ψ(0)− δ
[
V1

(
X, (1 + ρ)−(N+∆)W

)
−V1

(
X, (1 + ρ)−NW

)]
− (1 + ρ)∆− 1

(1 + ρ)∆
δNW. (17)

The last equality follows from the definition of (16). Observe that the value of payables finance

Ψ(∆) consists three parts: (1) the value of payables finance Ψ(0) without any payment term

extension, (2) the cost of δ
[
V1

(
X, (1 + ρ)−(N+∆)W

)
−V1 (X, (1 + ρ)−NW )

]
due to reduced available

payables finance for withdrawal as a result of payment extension, and (3) the loss of present

value of (1+ρ)∆−1

(1+ρ)∆
δNW due to payment extension. Note that, the last two parts capture the cost

of payment term extension to the supplier. As the payment due date extension lengthens, the

supplier’s cost from receiving a delayed payment increases according to the monotonicity property

shown in Proposition 1.

On the other hand, with a longer payment due date, the buyer could lower its working capital

cost, leading to more efficient operations. Since payables finance works as a buyer-led program (see

Global Supply Chain Finance Forum 2020), we can model the buyer as a leader and the bank and

the suppliers as followers in a Stackelberg game. Specifically, the buyer can first work with the bank

to set the payables finance interest rate at ρ = ρb + r, where r represents the bank’s reservation

interest premium for participating in the payables finance arrangement. With the payables finance

interest rate ρ, the buyer can determine the payment term extension and make a take-it-or-leave-it

offer to the supplier. The supplier then evaluates the value of the offer and decides whether or not

to participate in the arrangement.
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It is clear that given a payables finance interest rate ρ, the supplier is willing to participate in

the payables finance arrangement with payment term extension ∆, as long as the value of payables

finance Ψ(∆) ≥ 0. The buyer’s benefit is increasing in the payment extension ∆. Therefore, in

equilibrium, given the payables finance interest rate ρ, the buyer would offer a payment term with

the maximum due date extension as follows:

∆∗ = max{∆≥ 0 | s.t. Ψ(∆)≥ 0}. (18)

According to the formulation (17), the condition in (18) becomes

Ψ(0)≥ δ
[
V1

(
X, (1 + ρ)−(N+∆)W

)
−V1

(
X, (1 + ρ)−NW

)]
+

(1 + ρ)∆− 1

(1 + ρ)∆
δNW. (19)

Therefore, ∆∗ is the point when the cash flow cost savings from payables finance without any

payment term extension just break even with the cost increase due to the payment term extension.

The following proposition summarizes the properties of the equilibrium payment extension:

Proposition 5. The equilibrium payment extension ∆∗ is decreasing in ρ. Suppose N = 1 and

the random cash flow follows a normal distribution (µ,σ). Then ∆∗ is increasing in σ if ρd > 2ρs;

and ∆∗ may be either increasing or decreasing in W , depending on the level of cash flow uncertainty.

Proposition 5 shows that the equilibrium payment extension is decreasing in the payables finance

interest rate ρ. Intuitively, as ρ decreases, the supplier gains more value from payables finance (see

Proposition 3), which in turn allows the buyer to extend the payment due date further while still

keeping the supplier participate. Thus, the adoption of the blockchain technology, if it helps further

lower the payables finance interest rate as discussed in §3.3, may lead to longer payment extensions

for the buyer in equilibrium.

Furthermore, when the interest cost of cash shortfall is relatively high and when payment due

date is relatively short, the equilibrium payment extension is increasing in the cash flow uncertainty

level σ. As shown in Proposition 4, the value of payables finance increases as σ increases, which

enables a longer equilibrium payment extension for the buyer. In this case, we also find that

the equilibrium payment extension can be either increasing or decreasing in the payables finance

amount W , depending on cash flow uncertainty. Intuitively, increasing W would increase the loss

of present value of the payment for the supplier due to the delayed payment, yet simultaneously

increase the value of payables finance for the supplier. The first effect shortens the equilibrium

payment term extension to ensure the supplier’s participation, whereas the second effect allows for

a longer equilibrium payment extension for the buyer. Because of this tradeoff, the buyer may not

necessarily always achieve longer payment extension in equilibrium as the payables finance amount

increases.
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4. Heuristic Policies and Bounds

From our analysis in the previous section, evaluating the value of payables finance Ψ(0) and the

equilibrium payment extension ∆∗ both require evaluating the optimal cost function V1. Recall

from the discussion of Proposition 2 that the optimal policy for our payables finance problem (5)

is challenging to compute because one needs to determine yLn (xn,wn), yMn (xn,wn), and yUn (xn,wn)

for each possible xn and wn along all possible sample paths.

In this section, we derive an easy-to-compute heuristic policy based on an approximate dynamic

program formulation, where the value function of the approximate dynamic program can also serve

as an easy-to-compute system cost lower bound for the original problem. As a benchmark for

comparison, we also derive the myopic policy for the original problem as another heuristic solution.

4.1. System Cost Lower Bound and Approximate Policy

Observe that the expression of xn+1 given in (1) can be rewritten as follows: for 1≤ n≤N ,

xn+1 =(1 + ρ)
[
xn + min{(yn−xn)+,wn}− ξn

]
−(ρ− ρc)(xn− yn)+− (ρs− ρ)(yn−xn−wn)+− ρ(yn− ξn)+− (ρd− ρ)(ξn− yn)+︸ ︷︷ ︸

Terms to be dropped

.

Dropping the last four (negative) interest terms in xn+1 yields the following: for 1≤ n≤N ,

xn+1 ≈


(1 + ρ)(xn− ξn) if yn ≤ xn,

(1 + ρ)(yn− ξn) if xn < yn ≤ xn +wn,

(1 + ρ)(xn +wn− ξn) if yn >xn +wn,

xn+1 +wn+1 ≈ (1 + ρ)(xn +wn− ξn),

where, the righthand side is a function of either xn, yn, or xn+wn in all cases. With this modification

of the state trainsition, it can be shown that the first-order derivative of E [Vn+1(xn+1,wn+1)] with

respect to yn becomes independent of xn and wn, which helps remove the dependence of xn and

wn in the optimal cash policy.

Therefore, we can define the following approximate cash balance transition recursively by drop-

ping the terms as described above: for 1≤ n≤N ,

x̃n+1 = (1 + ρ)
[
x̃n + min{(yn− x̃n)+, w̃n}− ξn

]
, (20)

w̃n+1 = (1 + ρ)
[
w̃n− (yn− x̃n)+

]+
, (21)

where x̃1 = x1 =X and w̃1 = w1 = (1 + ρ)−NW . With the modified state transition given in (20)

and (21), we can define the following dynamic program based on x̃n and w̃n: for 1≤ n≤N ,

Ṽn(x̃n, w̃n) = min
yn

{
G̃n(yn, x̃n, w̃n)

}
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= min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn− x̃n)+, w̃n

}
+(ρs− ρc)(yn− x̃n− w̃n)+ + δE

[
Ṽn+1(x̃n+1, w̃n+1)

]}
. (22)

The following proposition summarizes the property and optimal solution for the above problem:

Proposition 6. For any 1≤ n≤N , the following hold:

(i) Ṽn(xn,wn)≤ Vn(xn,wn) for any given xn and wn;

(ii) G̃n(yn, x̃n, w̃n) is convex in yn;

(iii) The optimal cash policy y†n for problem (22) is given by

y†n =



L= F−1
(
ρd−ρs
ρd

)
if x̃n + w̃n <L,

x̃n + w̃n if L≤ x̃n + w̃n < M̃n,

M̃n if x̃n < M̃n ≤ x̃n + w̃n,

x̃n if M̃n ≤ x̃n <U,

U = F−1(ρd−ρc
ρd

) if x̃n ≥U,

where

M̃n =arg min
yn

{
γn(ρ)yn− (γn(ρ)− ρc)x̃n + ρdE

[
(ξn− yn)+

]
+ δE

[
Ṽn+1((1 + ρ)(yn− ξn), (1 + ρ)(w̃n + x̃n− yn))

]}
,

with L< M̃n <U . Moreover, M̃n ≤ M̃n+1 for 1≤ n<N .

Proposition 6(i) shows that the value function of the modified problem (22) serves as a lower

bound for that of the original problem (5) with the same initial cash balance. This property is

quite useful for numerical evaluation of the performance of various heuristics (see §5 for details).

The intuition of this result is as follows. Since x̃n is obtained by dropping negative terms in the

original expressions of xn recursively from the first period, it follows that x̃n ≥ xn and w̃n ≥ wn.

Recall from Proposition 1 that Vn(xn,wn) is decreasing in xn and wn. Thus, it follows by induction

that Ṽn(xn,wn)≤ Vn(xn,wn) for any given xn and wn.

Proposition 6(ii)-(iii) are proven together by backward induction. We refer to the optimal policy

for this modified problem as the “approximate policy.” The structure of the approximate policy is

similar to that of the optimal policy in Proposition 2, where both policies feature three optimal cash

levels. However, all three optimal cash levels under the policy equal their corresponding critical

levels, and are independent of the current-period cash balances. Moreover, the “invest-down-to”

level U and the “borrow-up-to” level L are determined by simple critical fractiles. Specifically, the

critical level U for lowering cash level via investing is determined by a critical fractile (ρd−ρc)/ρd.

This is analogous to the critical fractile in the inventory problem that balances the inventory
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overage and underage costs. In our cash flow problem, the unit overage cost of keeping too much

cash is the forgone risk-free interest ρc. The unit underage cost of having too little cash is ρd− ρc
(with one unit less cash level, one has to pay the interest cost ρd for cash shortfall netting the

risk-free interest ρc earned). Setting the marginal expected cash overage cost equal the marginal

expected cash underage cost yields the above critical fractile. Similarly, the critical level L for

raising cash level by borrowing additional short-term loans is based on the corresponding unit

overage cost of ρs (which is the interest cost of obtaining additional short-term loans) and the

corresponding unit underage cost ρd− ρs.

A few discussion points are in order. First, we note that the “invest-down-to” level U and the

“borrow-up-to” level L under the approximate policy are the same as the upper and lower optimal

cash levels when the interest gains and costs are decoupled from the cash balance (see Proposition

B.2 in Appendix B). Second, the middle level M̃n is time-dependent and increasing in the period

n, because γn(ρ) is decreasing in time period n (see the expression in Proposition 1). This implies

that under the approximate policy, the supplier is more likely to request withdrawals from payables

finance in later periods. Intuitively, as it approaches to the due date (i.e., fewer periods are left

before the due date), the would-be interest gain (if the amount is kept unused) for payables finance

amount becomes smaller, and as a result, the supplier is more likely to draw from payables finance.

Finally, all three critical levels L, M̃n, and U under the approximate policy are easy to compute,

and as a result, we can replace the optimal cash levels of yLn (xn,wn), yMn (xn,wn), and yUn (xn,wn)

and the critical levels of Ln, Mn, and Un(wn) in the original optimal policy with the approximate

optimal levels of L, M̃n, and U , respectively, to obtain a heuristic policy to our payables finance

problem. This approximate policy is illustrated in Figure 4, where the dashed curves of yLn (xn,wn),

yMn (xn,wn), and yUn (xn,wn) are approximated by solid flat lines of L, M̃n, and U .

4.2. Myopic Policy

As a benchmark for comparison, we derive the myopic policy for our payables finance problem (5).

A myopic policy is the optimal cash level decision when the supplier only considers the current

period cash flow cost.6 The following proposition summarizes the myopic policy for our problem:

Proposition 7. For any 1≤ n≤N , the myopic cash policy ymn for problem (5) is given by

6 The myopic policy structure is optimal in the single-period setting with N = 1. In the single-period problem, the

supplier makes one-time cash level decision at the beginning of period one, so as to maximize the total cash balance

in the terminal period. This single-period model setup is commonly used in the supply chain finance literature (see

Tanrisever et al. 2012, Tunca and Zhu 2018, Kouvelis and Xu 2021).
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Figure 4 Illustration of approximate cash policy with payables finance

ymn =



L= F−1
(
ρd−ρs
ρd

)
if xn +wn <L,

xn +wn if L≤ xn +wn <M
m
n ,

Mm
n = F−1

(
ρd−γn(ρ)

ρd

)
if xn <M

m
n ≤ xn +wn,

xn if Mm
n ≤ xn <U,

U = F−1
(
ρd−ρc
ρd

)
if xn ≥U,

with L<Mm
n <U . Moreover, Mm

n ≤ M̃n and Mm
n ≤Mm

n+1 for 1≤ n<N .

Proposition 7 shows that the myopic policy shares a similar strucuture to the approximate policy

characterized in Proposition 6. Specifically, the “invest-down-to” level U and the “borrow-up-to”

level L are the same as in the approximate policy. The only difference between the two policies

is the critical level for raising cash level through payables finance, where the critical level Mm
n

in the myopic policy is simply determined by a critical fractile. In determining Mm
n for raising

cash level by drawing from payables finance, the corresponding unit overage cost is γn(ρ) (which

reflects the interest cost of drawing from payables finance) and the corresponding unit underage

cost is ρd− γn(ρ). Furthermore, the critical level Mm
n in the myopic policy is less than the critical

level M̃n in the approximate policy. Intuitively, the myopic policy ignores the future cost of the

current-period decision, so it may draw too little from the payables finance account compared to

the approximate policy that takes into account the future cost. In addition, like in the approximate

policy, Mm
n is also increasing in time period n due to the term γn(ρ). Finally, it is also interesting to

note that the myopic policy in the original problem is identical to the myopic policy in the modified

problem (22). Like the approximate policy, we can also use the myopic policy as a heuristic policy

to our payables finance problem.
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5. Numerical Studies

In this section, we present two numerical studies for our problem. In the first study, we conduct

numerical experiments to evaluate the easy-to-compute approximate and myopic policies specified

in §4, demonstrating their near-optimal performance. In the second study, we use real cash flow data

from a major US chemicals company to estimate the key parameters for our payables finance model

and then evaluate the value of payables finance for the suppliers of this company. In addition, we

estimate the maximum payment term extension this company can achieve by offering the payables

finance arrangement to its suppliers from the data.

5.1. Evaluating Heuristic Policy Performance

In the first numerical study, we evaluate the performance of the approximate policy and the myopic

policy. Let V z
1 (x1,w1), with z ∈ {a,m}, denote the system cost by applying the approximate policy

(“a”) or the myopic policy (“m”) to the original problem. The relative percentage of optimality

gap can be defined as (
V z

1 (x1,w1)

V1(x1,w1)
− 1

)
× 100%, z ∈ {a,m}.

As discussed in the previous section, the optimal system performance V1(x1,w1) is difficult to

compute. To circumvent this challenge, we define an upper bound for the relative percentage of

optimality gap as follows:

ez :=

(
V z

1 (x1,w1)

Ṽ1(x1,w1)
− 1

)
× 100%≥

(
V z

1 (x1,w1)

V1(x1,w1)
− 1

)
× 100%, z ∈ {a,m},

where the inequality follows from Proposition 6(i). We note that the value function of the lower

bound system Ṽ1(x1,w1) is easy to compute. As a result, we shall use ez to evaluate the optimality

gap of the policy z ∈ {a,m} throughout this section.

We assume one period consists of 10 days in this numerical study. In practice, a common fixed-

term arrangement usually requires the buyer to pay within 30 to 60 days (Commercial Capital

2020). This corresponds to three to six periods in our model. Under the payables finance arrange-

ment, the buyer can sometimes extend the payment due date much longer. Therefore, we allow

the payment due dates to vary from three periods to 15 periods, i.e., 3≤N ≤ 15, in our numerical

experiments.

We further assume the random cash flow follows a normal distribution with mean µ and standard

deviation σ. The cash flow mean µ is normalized at one unit net cash inflow per period. For the rest

of the model parameters, we vary them with three values, representing the low, medium, and high

value scenarios. Specifically, we consider three cash flow uncertainty situations with σ ∈ {1,3,5}.

For the initial cash balance, we set X ∈ {0,1,2}, representing zero cash balance, one times, and two

times the expected net cash inflow per period. The initial payables finance amount W is chosen
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according to W ∈ {1,3,5}, representing one times, three times, and five times the expected net

cash inflow per period.

For the risk-free interest rate, we use the Treasury Bill rate, which is about 2.2% annual interest

rate. Dividing this annual rate by 36.5, we obtain the risk-free interest per period in our model to be

about 0.06%. With the same reasoning, we set ρc ∈ {0.05%,0.06%,0.07%}, corresponding to annual

rates of about 1.8%, 2.2%, and 2.6%. The supplier’s bank borrowing rate is significantly higher

owing to its poor credit rating. We set ρs ∈ {0.4%,0.6%,0.8%}, corresponding to annual rates of

about 15%, 22%, and 29%. The payables finance interest rate is set as ρ ∈ {0.07%,0.08%,0.09%},

corresponding to annual rates of about 2.6%, 2.9%, and 3.3%. Finally, According to Bankrate

(2020), the average annual rate of emergency loans (for bad credit) is about 36%, corresponding

to ρd = 1% in one period, which is fixed in all our experiments.

We vary one of the six model parameters at a time while keeping the rest five parameters at the

medium value. Therefore, we have a total of 6× 3 = 18 parameter scenarios. For each parameter

scenario, we evaluate the optimality gap upper bounds ea and em for different payment due dates

with 3 ≤ N ≤ 15. Table 1 reports the average and maximum optimality gap upper bounds of

approximate and myopic policies under different parameter scenarios.

From the table, we first observe that both the approximate and myopic policies perform very well,

achieving near-optimal performance. The largest optimality gap across all parameter scenarios is

less than 4% in both policies. For the approximate policy, recall from (20) and (21) that only some

of the interest terms (mostly are the interest difference terms) are dropped in the approximation.

This suggests that, the approximation error appears to have a negligible impact on the system

performance. Thus, the approximate policy performs significantly better than the myopic policy

with its largest optimality gap 0.59%. We also expect that when the one-period interest rates

become much larger, the approximate policy will perform considerably better than the myopic

policy. Given the good performance and easy-to-compute feature of the approximate policy, we will

use the approximate policy for our remaining numerical experiments. The optimality gap upper

bounds of the approximate policy are plotted in Figure 5.

An interesting observation from the figure is that the optimality gap measure ea increases in

the due date N in all parameter scenarios, suggesting that the approximate policy performs better

with a shorter due date. An intuitive explanation for this result is that the approximate policy

approximates all three cash levels yLn (xn,wn), yMn (xn,wn), and yUn (xn,wn) for each period n before

the due date. Therefore, as the due date increases, the approximation error increases and the

optimality gap widens.

In addition, Figure 5 (a)-(c) reveals that the optimality gap measure ea is decreasing in the

initial cash balance X and the payables finance amount W , and is increasing in the cash flow
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Table 1 Optimality Gaps for Approximate Policy and Myopic Policy.

Approximate Policy Myopic Policy

Average (%) Maximum (%) Average (%) Maximum (%)

X

0 0.302 0.483 1.969 3.945

1 0.249 0.388 1.510 2.185

2 0.204 0.322 0.766 1.192

W

1 0.380 0.590 1.076 1.809

3 0.249 0.388 1.510 2.185

5 0.163 0.253 1.725 2.540

σ

1 0.010 0.012 0.024 0.039

3 0.249 0.388 1.510 2.185

5 0.491 0.864 1.795 3.065

ρc

0.05% 0.271 0.414 1.968 2.746

0.06% 0.249 0.388 1.510 2.185

0.07% 0.221 0.339s 0.686 1.281

ρs

0.4% 0.195 0.283 1.502 2.266

0.6% 0.249 0.388 1.510 2.185

0.8% 0.285 0.461 1.522 2.310

ρ

0.07% 0.224 0.359 0.742 1.397

0.08% 0.249 0.388 1.510 2.185

0.09% 0.267 0.407 1.658 2.131

uncertainty σ. As the initial cash balance increases, the need for early withdrawal of payables

finance reduces, leading to smaller approximation error. Similarly, as the payables finance amount

increases, the approximation error also reduces. By contrast, as the cash flow uncertainty increases,

the need for early withdrawal of payables finance increases, which increases the approximation

error. Figure 5 (d)-(f) also reveals that the optimality gap measure ea is decreasing in the risk-free

interest rate ρc, and is increasing in the supplier’s additional short-term loans borrowing rate ρs

and the payables finance rate ρ. Increasing the risk-free interest rate helps reduce the incentive

for early withdrawal of payables finance, so the approximation error reduces. On the other hand,

increasing the supplier’s additional short-term loans borrowing rate increases the need for early

withdrawal of payables finance, so the approximation error increases. Additionally, increasing the

payables finance rate increases those terms dropped in the approximation, thus leading to a greater
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Figure 5 Optimality gap of the approximate policy with respect to various model parameters.

approximation error.

5.2. Applications with Real Data

To further test our model, we have collaborated with a major US chemicals company to obtain its

supply chain cash flow data. The firm buys raw material from various suppliers and sells finished

products to a number of global customers. We have collected detailed invoice-transaction-level

accounts payable and accounts receivable data from the firm.

For this study, we focus on the transaction-level accounts payable data, which spans from October

24, 2017 to December 1, 2021. There are a total of 1,697 payment transactions with seven suppliers,

covering 52 types of raw material. The payment terms with each supplier vary, depending on the

raw material under transaction, with a wide range from 15 days to 120 days. The invoice amount

varies from $224 to $8 million.

From the data, since a supplier might have different payment terms for different raw material,

we group the raw material with the same payment terms for the supplier and treat it as a contract.

This grouping strategy yields 11 contracts (we remove one supplier from the grouping due to

sparsity of data). For each contract, we use the average invoice amount as the invoice amount W

in our model, which ranges from $6,298 to $490,000 in the data. We further assume one period
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consists of 15 days according to the payment terms observed in the data. As such, the payment

due dates of these contracts vary from one to eight periods in our model, i.e., 1≤N ≤ 8.

As in the first numerical study, we assume the supplier’s cash flow follows a normal distribution.

Since we do not have the supplier’s cash flow data, we use the firm’s payment flow to the supplier as

a proxy with some adjustment. Specifically, we compute the standard deviation of the firm’s aggre-

gate payments to the supplier within a 15-day period and use it to approximate the supplier’s cash

inflow standard deviation, denoted by σin. We further assume the supplier faces an independent

and identically distributed random cash outflow to its own suppliers. As a result, the net random

cash flow for the supplier follows a normal distribution with mean µ = 0 and σ =
√

2σin, where

σin is found ranging from $23,864 to $4.77 million in the data. In addition, for ease of exposition,

we assume the supplier’s initial on-hand cash balance X = 0, with the understanding that as the

supplier’s initial on-hand cash balance increases, the cash flow cost for the supplier reduces (see

Proposition 1). All interest rates used in this study are estimated to be 1.5 times the medium value

used in the first numerical study because we assume one period consists of 15 days rather than 10

days in this second study.

5.2.1. Estimating Value of Payables Finance Recall from §3.3 that evaluating the value

of payables finance requires solving the cash flow cost function V1, which is difficult to compute.

To address such challenge, we employ the approximate policy together with the system cost lower

bound to compute the lower bound of the value of payables finance, which is given below:

Ψa := δ
[
Ṽ1 (X,0)−V a

1

(
X, (1 + ρ)−NW

)]
≤ δ

[
V1 (X,0)−V1

(
X, (1 + ρ)−NW

)]
.

The above inequality follows from the system cost lower bound property given in Proposition 6

and the fact that the approximate policy is sub-optimal for the original problem. We use Ψa to

estimate the value of payables finance to each supplier based on the payment amount and due date.

Figure 6 illustrates the estimated value of payables finance for each of the 11 contracts in the data.

Each bubble represents a contract, specified by a payment due date (on the x-axis), average payment

amount W (on the y-axis), and an estimated supplier cash flow uncertainty σ in parenthesis next

to the bubble. The size of the bubble represents the value of payables finance for the supplier, with

the estimated dollar value shown next to the bubble.

We find that with the estimated model parameters, the value of payables finance for suppliers

can range from $679 to $7,334, implying that the cost savings vary from 0.61% to 17.11% of the

invoice amount in the contract. It is worth noting that this estimated value of payables finance

is per invoice transaction. If the total number of invoice transactions during a year is taken into

account, the annual cost savings from the payables finance arrangement can be quite sizable. Thus,
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Figure 6 Estimated value of payables finance per invoice transaction for the suppliers (σ and W are in millions,

with σ shown in parenthesis).

the firm can use our model to offer the payables finance arrangement to a selective set of contracts

that have high annual cost savings potential for the suppliers.

Moreover, Figure 6 suggests that the highest payables finance value for the supplier arises when

the payment due date N is the longest, while the lowest value appears when cash flow uncertainty

σ is the lowest. Regarding the effect of payment due date N , without payables finance, the supplier

who faces a longer payment due date is more likely to be in great need of cash to buffer for

random cash flow, since it could only receive the payables finance amount at the payment due date.

However, directly borrowing short-term loans can be costly to a small supplier with poor credit

rating. As such, the existence of payables finance offers the supplier with a chance of receiving

early payments at a more attractive rate. Therefore, such supplier with a longer payment due date

can enjoy more benefits from payables finance. In addition, with a greater cash flow uncertainty,

the supplier can enjoy more cash liquidity with payables finance. This also demonstrates that the

analytical insights obtained in Proposition 4 are robust in more general cases. Furthermore, the

estimated value of payables finance appears to increase as the payables finance amount increases.

Such an effect is consistent with our model prediction given in Proposition 3.

5.2.2. Estimating Equilibrium Payment Term Extension Next, we apply the approx-

imate policy together with the system cost lower bound to determine the lower bound of the

equilibrium payment term extension, which can serve as a conservative estimate of the actual

equilibrium payment term extension.

Given a payables finance interest rate, the equilibrium payment term extension that the buyer

can achieve is determined by (18) in §3.4. From the condition for determining ∆∗, observe that

V1 (X,0)−V1

(
X, (1 + ρ)−(N+∆)W

)
≥ Ṽ1 (X,0)−V a

1

(
X, (1 + ρ)−(N+∆)W

)
.
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We can use the righthand side of the inequality (which is easy to compute) to replace the lefthand

side used in condition (18) to obtain a lower bound ∆a for ∆∗.

Figure 7 illustrates the payment due date extension ∆a in the contracts. Each bubble in the

figure represents a contract, with its current payment due date shown on the x-axis, the average

payables finance amount W shown on the y-axis, and the estimated cash flow uncertainty σ shown

in parenthesis next to the bubble. The size of the bubble represents the equilibrium payment term

extension for the firm, which is also shown next to the bubble. In the estimation, we cap the

maximum payment term extension to 2 years, i.e., 730 days.

Figure 7 Estimated payment term extension for the buyer (σ and W in millions, with σ shown in parenthesis).

In Figure 7, the estimated payment term extension that can be achieved by the firm ranges from

90 days to two years. This shows strong evidence that, by offering the payables finance arrangement,

the firm can extend its payment due date considerably to free up its working capital. In general,

we observe from the figure that as the initial payment due date N increases, the buyer can ask for

a longer payment due date extension. This is because with an initial long payment due date, the

cost increase for the supplier due to additional payment extension is relatively small compared to

the case with a short payment due date. Thus, our model can be used to gauge the parameters for

payment term extension with the suppliers during the supply contract negotiation.

6. Conclusion

In this paper, we develop a random cash flow model to study the payables finance problem. Our

integrated cash balance model extends the existing cash flow literature by allowing all interest

gains and costs to accrue together with the cash balance in a single sum. We find the optimal cash

policy for our problem does not have the simple “borrow-up-to” and “invest-down-to” features as

in the classic (L,U) policy. Instead, the optimal cash policy possesses the “non-borrow-up-to” and
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“non-invest-down-to” features, which resemble the “non-order-up-to” optimal policy found in the

classic random yield problem. With the optimal cash policy, we derive qualitative insights about

the value of payables finance and study the equilibrium payment term extension for the buyer.

To tackle the computational challenge brought by the “non-borrow-up-to” and “non-invest-down-

to” features of the optimal policy, we derive an easy-to-compute approximate policy based on an

approximate dynamic program formulation, where the value function of the approximate dynamic

program can serve as an easy-to-compute system cost lower bound for the original problem. We

also derive the myopic policy for the original problem as a benchmark for comparison. Both the

approximate policy and the myopic policy are shown to achieve near-optimal performance in the

original problem, with the approximate policy performing significantly better than the myopic

policy across all experimental parameter scenarios. We further demonstrate how to apply the

approximate policy together with the system cost lower bound to obtain lower bounds for the value

of payables finance to the supplier and the equilibrium payment term extension for the buyer, with

applications to a data set obtained from a major US chemicals company.

As a first investigation into the value of payables finance with a model that accounts for the

supplier cash flow uncertainty over multiple periods, we have restricted our attention to a single

payables finance arrangement between the supplier and the buyer. This simpler case serves as a

building block for the more complex case with multiple payables finance arrangements from one or

many buyers. Based on the current analysis, we expect the interactions between multiple payables

finance arrangements to pose some additional technical challenges, but may also yield additional

valuable insights for practice.

Another exciting opportunity for future research is to consider blockchain-based payables finance

in a multi-tier supply chain, referred to as “deep-tier supply chain finance” in practice (White

2020). Smaller suppliers at the further upstream of a supply chain are likely in greater need of cash

liquidity enabled by payables finance. An interesting question for future work is to investigate and

quantify the value of payables finance for such deep-tier suppliers. Although we expect some of our

model insights to extend to the deep-tier setting, further work is necessary in order to confirm and

improve our understanding of the cash flow management with deep-tier payables finance.

Finally, it is important to recognize that there may exist some information asymmetry among

the parties involved in the payables finance arrangement. For example, the supplier’s initial cash

balance and the random cash demand distribution may not be readily observable by the buyer.

The model presented in the current paper considers the full information case for the problem,

which can be used as a benchmark for future analysis of the asymmetric information case. While

the blockchain technology may help alleviate such information asymmetry problem to some extent,

investigating the strategic interactions among the parties involved in payables finance can further

expand our knowledge of the optimal design for payables finance.
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Chen, Li, Şafak Yücel, Kaijie Zhu. 2017. Inventory management in a closed-loop supply chain with advance

demand information. Operations Research Letters 45(2) 175–180.

Chen, Xin, David Simchi-Levi. 2009. A new approach for the stochastic cash balance problem with fixed

costs. Probability in the Engineering and Informational Sciences 23 545–562.

Chen, Xu, Lian Qi, Zuo-Jun Max Shen, Ye Xu. 2021. The value of trade credit under risk controls. Inter-

national Journal of Production Research 59(8) 2498–2521.

Commercial Capital. 2020. How does supply chain financing work? https://www.comcapfactoring.com/

blog/how-does-supplier-financing-work/. (Accessed on 03/30/2022).

Constantinides, George M. 1976. Stochastic cash management with fixed and proportional transaction costs.

Management Science 22(12) 1320–1331.

Corporate Cash Management Playbook. 2021. How Digital and Cloud Technology Can Empower

CFOs . https://www.pymnts.com/news/b2b-payments/2021/54-of-cfos-consider-liquidity-

and-cash-management-a-top-challenge/. (Accessed on 03/30/2022).

De Meijer, Carlo R.W. 2017. Blockchain and supply chain finance: the missing link. https:

//www.finextra.com/blogposting/14049/blockchain-and-supply-chain-finance-the-missing-

link. (Accessed on 03/30/2022).

Eaglesham, Jean. 2020. Supply-chain finance is new risk in crisis. Wall Street Journal. (Accessed on

03/30/2022).



Chen, Yan, and Ding: Optimal Cash Management with Payables Finance 33

Eppen, Gary D, Eugene F Fama. 1969. Cash balance and simple dynamic portfolio problems with propor-

tional costs. International Economic Review 10(2) 119–133.

Eppen, Gary D, Ananth V Iyer. 1997. Improved fashion buying with bayesian updates. Operations Research

45(6) 805–819.

Esty, Benjamin C., E. Scott Mayfield, David Lane. 2017. Supply chain finance at Procter & Gamble. Harvard

Business School Case No. 90216-039.

Gao, Xiaodan. 2018. Corporate cash hoarding: The role of just-in-time adoption. Management Science

64(10) 4858–4876. doi:10.1287/mnsc.2017.2775.

Global Supply Chain Finance Forum. 2020. Payables finance. http://supplychainfinanceforum.org/

techniques/payables-finance/. (Accessed on 03/30/2022).

Gupta, Diwakar, Lei Wang. 2009. A stochastic inventory model with trade credit. Manufacturing & Service

Operations Management 11(1) 4–18.

Harrison, J. Michael. 2013. Brownian Models of Performance and Control . Cambridge University Press.

Henig, Mordechai, Yigal Gerchak. 1990. The structure of periodic review policies in the presence of random

yield. Operations Research 38(4) 634–643.

Herath, Ganaka. 2015. Supply chain finance: The emergence of a new competitive landscape. McKinsey on

Payments 8(22). (Accessed on 03/30/2022).

Hu, Ming, Qu Qian, S. Alex Yang. 2018. Financial pooling in a supply chain. Working Paper, University of

Toronto.

Kallberg, Jarl G, RW White, William T Ziemba. 1982. Short term financial planning under uncertainty.

Management Science 28(6) 670–682.

Kouvelis, Panos, Fasheng Xu. 2021. A supply chain theory of factoring and reverse factoring. Management

Science 67(10) 5969–6627.

Kouvelis, Panos, Wenhui Zhao. 2018. Who should finance the supply chain? impact of credit ratings on

supply chain decisions. Manufacturing & Service Operations Management 20(1) 19–35.

Ledger Insights. 2018a. Alipay’s parent applies blockchain to supply chain finance. https://

www.ledgerinsights.com/alipay-ant-double-chain-blockchain-supply-chain/. (Accessed on

03/30/2022).

Ledger Insights. 2018b. Two Chinese trade finance blockchains announced: Bank of China, Ping

An. https://www.ledgerinsights.com/two-chinese-trade-finance-blockchains-announced-

bank-of-china-ping-an/. (Accessed on 03/30/2022).

Li, Lode, Martin Shubik, Matthew J. Sobel. 2013. Control of dividends, capital subscriptions, and physical

inventories. Management Science 59(5) 1107–1124.



34 Chen, Yan, and Ding: Optimal Cash Management with Payables Finance

Miller, Merton H, Daniel Orr. 1966. A model of the demand for money by firms. The Quarterly journal of

economics 413–435.

Nallareddy, Suresh, Mani Sethuraman, Mohan Venkatachalam. 2020. Changes in accrual properties and

operating environment: Implications for cash flow predictability. Journal of Accounting and Economics

69(2) 101313.

Neave, Edwin H. 1970. The stochastic cash balance problem with fixed costs for increases and decreases.

Management Science 16(7) 472–490.

Ng, Serena. 2013. P&G, big companies pinch suppliers on payments. Wall Street Journal. (Accessed on

03/30/2022).

PwC & Supply Chain Finance Community. 2019. Scf barometer 2018/2019: Entering a new era of matu-

rity and solutions. https://www.pwc.com/vn/en/deals/assets/scf-barometer-2018-2019.pdf.

(Accessed on 03/30/2022).

Randall, Wesley S, Theodore M Farris. 2009. Supply chain financing: using cash-to-cash variables to

strengthen the supply chain. International Journal of Physical Distribution & Logistics Management

39(8) 669–689.

Rockafellar, R. Tyrrell. 1970. Convex analysis. Princeton Mathematical Series, Princeton University Press.

Seifert, Ralf W, Daniel Seifert. 2009. Supply chain finance-what’s it worth? Perspectives for Managers (178)

1.

Shen, Lucinda. 2020. The 20 biggest companies that have filed for bankruptcy because of the

coronavirus pandemic. https://fortune.com/2020/06/29/companies-filing-bankruptcy-2020-

during-coronavirus-pandemic-covid-19-economy-industries/. (Accessed on 03/30/2022).

Tanrisever, Fehmi, Hande Cetinay, Matthew Reindorp, Jan Fransoo. 2012. Value of reverse factoring in

multi-stage supply chains. Working Paper, Bilkent University.

Thangavelu, Poonkulali. 2021. Why Cash Management Is Key To Business Success. https:

//www.investopedia.com/articles/investing/041515/why-cash-management-key-business-

success.asp. (Accessed on 03/30/2022).

Tunca, Tunay I., Weiming Zhu. 2018. Buyer intermediation in supplier finance. Management Science 64(12)

5631–5650.

White, Maddy. 2020. Standard chartered invests in blockchain supply chain solution, eyes deep-tier scf

opportunities in china. https://www.gtreview.com/news/fintech/standard-chartered-invests-

in-blockchain-supply-chain-solution-eyes-deep-tier-scf-opportunities-in-china/.

(Accessed on 03/30/2022).

Wood, Miranda. 2019. DBS launches supply chain finance blockchain for chinese enterprises. https://

www.ledgerinsights.com/dbs-trade-financing-blockchain-chinese-enterprise/. (Accessed on

03/30/2022).



Chen, Yan, and Ding: Optimal Cash Management with Payables Finance 1

Online Appendix to

“Optimal Cash Management with Payables Finance”

This online appendix contains two parts. Appendix A contains a list of notations used in the paper,

all proofs for the results presented in the paper, as well as some auxiliary results together with their

proofs. Appendix B contains the analysis of our payables finance problem under the decoupling

cash balance assumption of the classic cash flow management literature.

A. Notations, Proofs, and Some Auxiliary Results

Table A.1 lists the notations used in the paper.

Table A.1 List of mathematical notations.

ρc Risk-free interest rate

ρs Supplier’s bank borrowing (additional short-term loans) rate

ρb Buyer’s bank borrowing rate

ρ Payables finance interest rate set by the bank

ρd Interest cost for cash shortfall

δ Period-to-period discount factor, with δ= 1/(1 + ρc)

N Payables finance due date

X Initial cash balance

W Initial payables finance amount expected on due date N

ξn Random cash demand during period n

xn On-hand cash balance available in period n

wn Cash amount available (after discounting) from payables finance in period n

yn Cash level used to meet random cash demand in period n

Proof of Proposition 1

First, we show that the problem (3) can be transformed into a cost minimization problem. Accord-

ing to the equation (3), the objective for the supplier is

Π(X,W ) = max
{y1,...,yN}

δNE [xN+1 +wN+1]

= max
{y1,...,yN}

{
x1 +w1 +

N∑
n=1

δn−1E [δ(xn+1 +wn+1)−xn−wn]

}
.
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Substituting the state transitions (1) and (2) into the term
∑N

n=1 δ
n−1E [δ(xn+1 +wn+1)−xn−wn]

yields

N∑
n=1

δn−1E [δ(xn+1 +wn+1)−xn−wn]

=
N∑
n=1

δn−1

{
δE
[
yn− ξn− ρd(ξn− yn)+ + (1 + ρc)(xn− yn)+− (1 + ρs)(yn−xn−wn)+

+ (1 + ρ)
[
wn− (yn−xn)+

]+ ]−xn−wn}
=

N∑
n=1

δn−1
[
−δµ− δρdE(ξn− yn)+− (1− δ)yn− δ(ρ− ρc)(yn−xn)+ + δ(ρ− ρc)wn

−δ(ρs− ρ)(yn−xn−wn)+
]
, (A.1)

where the last equality is from the fact that [wn− (yn−xn)+]
+

=wn−(yn−xn)+ +(yn−xn−wn)+.

According to (2), the payables finance balance wn+1 can be written as, for 1≤ n≤N ,

wn+1 = (1 + ρ)
[
wn− (yn−xn)+

]
+ (1 + ρ)(yn−xn−wn)+.

Plugging this into the term δ(ρ− ρc)wn yields, for 1≤ n≤N ,

δ(ρ− ρc)wn

=δ(ρ− ρc)(1 + ρ)wn−1− δ(ρ− ρc)(1 + ρ)(yn−1−xn−1)+ + δ(ρ− ρc)(1 + ρ)(yn−1−xn−1−wn−1)+

= · · ·

=δ(ρ− ρc)(1 + ρ)n−1w1− δ(ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i(yi−xi)+ + δ(ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i(yi−xi−wi)+.

Substituting the above expression back into equation (A.1), we have

N∑
n=1

δn−1E [δ(xn+1 +wn+1)−xn−wn]

=
N∑
n=1

δn−1

[
− δµ− δρdE(ξn− yn)+− (1− δ)yn− δ(ρ− ρc)(yn−xn)+− δ(ρs− ρ)(yn−xn−wn)+

+ δ(ρ− ρc)(1 + ρ)n−1w1− δ(ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i[(yi−xi)+− (yi−xi−wi)+]

]

=
N∑
n=1

δn
{
−µ− ρdE(ξn− yn)+− ρcyn− (1 + ρc)

(
[δ(1 + ρ)]

N−n+1− 1
)

min
{

(yn−xn)+,wn
}

+ (ρs− ρc)(yn−xn−wn)+

}
+
(

[δ(1 + ρ)]
N − 1

)
w1

=− δ(1− δ)−1
(
1− δN

)
µ+

[
δN − 1

(1 + ρ)N

]
W
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−
N∑
n=1

δn
{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn−xn)+,wn

}
+ (ρs− ρc)(yn−xn−wn)+

}
,

where γn(ρ) = δN−n(1 + ρ)N−n+1 − 1, representing the would-be interest gain if the amount is

kept unused until the due date. By substituting the above expression back into equation (3) and

rearranging it, we obtain the following equivalent cost minimization problem:

Π(X,W )

=X + δNW − δ− δ
N+1

1− δ
µ− δ min

{y1,...,yN}

{ N∑
n=1

δn−1
{
ρcyn + ρdE(ξn− yn)+

+(γn(ρ)− ρc)min
{

(yn−xn)+,wn
}

+ (ρs− ρc)(yn−xn−wn)+
}}

.

This can also be written as Π(X,W ) = X + δNW − δ−δN+1

1−δ µ − δV1 (x1,w1), where V1 (x1,w1) is

determined by the following dynamic program: for 1≤ n≤N ,

Vn(xn,wn) =min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn−xn)+,wn

}
+(ρs− ρc)(yn−xn−wn)+ + δE [Vn+1(xn+1,wn+1)]

}
.

Next, we show that the supplier’s cash flow cost Vn(xn,wn) is decreasing in xn and wn for any

1≤ n≤N , using backward induction. We first rewrite the dynamic program as, for 1≤ n≤N ,

Vn(xn,wn) =min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)(yn−xn)+ + (ρs− γn(ρ)) (yn−xn−wn)+

+δE [Vn+1(xn+1,wn+1)]} ,

where the equality is from the fact that min{(yn−xn)+,wn}= (yn−xn)+− (yn−xn−wn)+. Note

that, we have assumed ρs > γn(ρ) for all 1≤ n≤N in the model setup. Since the terminal period

VN+1(·, ·) = 0, with any x̂N ≥ xN , we have

VN(xN ,wN)

=min
yN

{
ρcyN + ρdE(ξN − yN)+ + (γN(ρ)− ρc)(yN −xN)+ + [ρs− γN(ρ)] (yN −xN −wN)+

}
≥min

yN

{
ρcyN + ρdE(ξN − yN)+ + (γN(ρ)− ρc)(yN − x̂N)+ + [ρs− γN(ρ)] (yN − x̂N −wN)+

}
=VN(x̂N ,wN).

Similarly, with any ŵN ≥wN , we have

VN(xN ,wN)

=min
yN

{
ρcyN + ρdE(ξN − yN)+ + (γN(ρ)− ρc)(yN −xN)+ + [ρs− γN(ρ)] (yN −xN −wN)+

}
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≥min
yN

{
ρcyN + ρdE(ξN − yN)+ + (γN(ρ)− ρc)(yN −xN)+ + [ρs− γN(ρ)] (yN −xN − ŵN)+

}
=VN(xN , ŵN).

Therefore, VN(xN ,wN) is decreasing in xN and wN . Using backward induction, suppose that

Vn+1(xn+1,wn+1) is decreasing in xn+1 and wn+1 for any 1≤ n <N − 1. With x̂n ≥ xn, according

to the state transitions,

x̂n+1 = yn− ξn− ρd(ξn− yn)+ + (1 + ρc)(x̂n− yn)+− (1 + ρs)(yn− x̂n−wn)+

≥ yn− ξn− ρd(ξn− yn)+ + (1 + ρc)(xn− yn)+− (1 + ρs)(yn−xn−wn)+ = xn+1,

ŵn+1 = (1 + ρ)
[
wn− (yn− x̂n)+

]+ ≥ (1 + ρ)
[
wn− (yn−xn)+

]+
=wn+1.

Thus, we have

Vn(xn,wn) =min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)(yn−xn)+ + [ρs− γn(ρ)] (yn−xn−wn)+

+δE [Vn+1(xn+1,wn+1)]}

≥min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)(yn− x̂n)+ + [ρs− γn(ρ)] (yn− x̂n−wn)+

+δE [Vn+1(xn+1,wn+1)]}

≥min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)(yn− x̂n)+ + [ρs− γn(ρ)] (yn− x̂n−wn)+

+δE [Vn+1(x̂n+1, ŵn+1)]}= Vn(x̂n,wn),

where the last inequality follows from the backward induction assumption. Therefore, we conclude

that Vn(xn,wn) is decreasing in xn for any 1≤ n≤N . Similarly, with ŵn ≥ wn, according to the

state transitions,

x̂n+1 = yn− ξn− ρd(ξn− yn)+ + (1 + ρc)(xn− yn)+− (1 + ρs)(yn−xn− ŵn)+

≥ yn− ξn− ρd(ξn− yn)+ + (1 + ρc)(xn− yn)+− (1 + ρs)(yn−xn−wn)+ = xn+1,

ŵn+1 = (1 + ρ)
[
ŵn− (yn−xn)+

]+ ≥ (1 + ρ)
[
wn− (yn−xn)+

]+
=wn+1.

Then, we have

Vn(xn,wn) =min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)(yn−xn)+ + [ρs− γn(ρ)] (yn−xn−wn)+

+δE [Vn+1(xn+1,wn+1)]}

≥min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)(yn−xn)+ + [ρs− γn(ρ)] (yn−xn− ŵn)+

+δE [Vn+1(x̂n+1, ŵn+1)]}= Vn(xn, ŵn),

where the inequality also follows from the backward induction assumption. Therefore, we conclude

that Vn(xn,wn) is decreasing in wn for any 1≤ n≤N . This completes the proof. �
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Proof of Proposition 2

We start by providing an overview of the backward induction proof. We first decompose the problem

(5) into three cost minimization subproblems based on three decision cases: yn ≤ xn, xn < yn ≤

xn + wn, and yn > xn + wn. By expressing the value function in period n+ 1 based on the five

exhaustive cases according to the optimal policy in period n+ 1 (by the induction assumption),

we prove the convexity of the three subproblem objective functions and the convexity at two kink

points yn = xn and yn = xn +wn. Combining the convexity results leads to the convexity of the

original objective function Gn(yn, xn,wn) in yn, xn, and wn. This enables us to characterize the

optimal cash policy in period n. We finally verify that Vn(xn,wn) is convex and differentiable in

xn and wn, which completes the backward induction.

Recall from the state transition equations (1) and (2), which can be written as:

xn+1 =


(1 + ρc)xn− ρcyn− ξn− ρd(ξn− yn)+ if yn ≤ xn,

yn− ξn− ρd(ξn− yn)+ if xn < yn ≤ xn +wn,

(1 + ρs)(xn +wn)− ρsyn− ξn− ρd(ξn− yn)+ if yn >xn +wn;

(A.2)

wn+1 =


(1 + ρ)wn if yn ≤ xn,

(1 + ρ)(wn +xn− yn) if xn < yn ≤ xn +wn,

0 if yn >xn +wn.

(A.3)

For ease of notation, if no confusion arises, we drop the arguments yn, xn, and wn in

Gn(yn, xn,wn), Gi
n(yn, xn,wn), and H i

n(yn, xn,wn) for i∈ {U,M,L}. Moreover, we denote the first-

order derivative of the function X (·) with respect to θ as ∂θX = ∂X (·)
∂θ

. In what follows, we use the

backward induction to prove the following claims together: for 1≤ n≤N ,

(i) Gi
n for i ∈ {U,M,L} is differentiable and convex in yn, xn, and wn; Gn is convex in yn, xn,

and wn;

(ii) 1+ρs
1+γN−n+1(ρ)

∂xnG
i
n ≤ ∂wnGi

n ≤ ∂xnGi
n + γn−1(ρ)− ρc for i∈ {U,M,L};

(iii) There exist three critical levels Ln ≤Mn ≤ Un(wn) (where Ln and Mn do not depend on xn

and wn, and Un(wn) depends only on wn and is (weakly) increasing in wn), such that the

optimal cash policy y∗n is given by

y∗n =



yLn (xn,wn) if xn +wn <Ln,

xn +wn if Ln ≤ xn +wn <Mn,

yMn (xn,wn) if xn <Mn ≤ xn +wn,

xn if Mn ≤ xn <Un(wn),

yUn (xn,wn) if xn ≥Un(wn),

where both yLn (xn,wn) and yMn (xn,wn) are functions of xn +wn only;
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(iv) Vn(xn,wn) is convex and differentiable in xn and wn.

We first verify that these claims hold for the last period N . We then assume they hold for period

n+ 1 and prove that they are also true for period n, completing the backward induction.

Verify the claims for period N . Because VN+1(·, ·) = 0, we have H i
N =E[VN+1(xN+1,wN+1)] = 0

for i ∈ {U,M,L}. It is straightforward to verify that Gi
N is differentiable and convex in yN , xN ,

and wN . From (6), it remains to check the convexity of GN at the two kink points: yN = xN and

yN = xN +wN . At the kink point yN = xN , we have

∂yNGN |yN↗xN= ∂yNG
U
N |yN↗xN = ρc− ρd + ρdF (xN)

<γN(ρ)− ρd + ρdF (xN)

= ∂yNG
M
N |yN↘xN= ∂yNGN |yN↘xN .

At the kink point yN = xN +wN , we have

∂yNGN |yN↗(xN+wN )= ∂yNG
M
N |yN↗(xN+wN ) = γN(ρ)− ρd + ρdF (xN +wN)

<ρs− ρd + ρdF (xN +wN)

= ∂yNG
L
N |yN↘(xN+wN )= ∂yNGN |yN↘(xN+wN ) .

Therefore, GN is convex in yN at these two kink points. Similarly, we can verify that GN is convex

in xN and wN at these two kink points too. It follows that GN is convex in yN , xN , and wN , so

claim (i) holds for period N .

Because H i
N = 0 and Gi

N is differentiable for i ∈ {U,M,L}, from definitions (7)-(9), we have

∂xNG
U
N = ∂wNG

U
N = 0, ∂xNG

M
N =−γN(ρ) +ρc, ∂wNG

M
N = 0, ∂xNG

L
N =−ρs +ρc and ∂wNG

M
N =−ρs +

γN(ρ). It is thus straightforward to verify that claim (ii) holds for period N .

From the convexity of Gi
N in yN and the definition in (13), the three optimal cash levels yiN for

i ∈ {U,M,L} are given uniquely by yUN = UN = F−1
(
ρd−ρc
ρd

)
, yMN = MN = F−1

(
ρd−ρ
ρd

)
, and yLN =

LN = F−1
(
ρd−ρs
ρd

)
, where the optimal cash levels are identical to the critical levels UN , MN , and

LN . In this case, the three critical levels UN , MN , and LN do not depend on xN and wN . Because

the cumulative distribution function F (·) is an increasing function, we have LN ≤MN ≤ UN due

to ρc <ρ< ρs. It follows that the optimal policy given by claim (iii) holds for period N .

As a result, we can write the value function VN(xN ,wN) based on the optimal policy as

VN(xN ,wN) =



GL
N(LN , xN ,wN) if xN +wN <LN ,

GM
N (xN +wN , xN ,wN) if LN ≤ xN +wN <MN ,

GM
N (MN , xN ,wN) if xN <MN ≤ xN +wN ,

GU
N(xN , xN ,wN) if MN ≤ xN <UN ,

GU
N(UN , xN ,wN) if xN ≥UN .
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According to Theorem 5.7 of Rockafellar (1970), the convexity of GN(yN , xN ,wN) in xN and wN

implies the convexity of VN(xN ,wN) in xN and wN . To check the differentiability of VN(xN ,wN)

in xN and wN , recall that Gi
N for i ∈ {U,M,L} is differentiable in xN and wN . By applying the

envelope theorem to each of the five segments of VN(xN ,wN) as well as recognizing that GN is

differentiable in xN and wN at the four connecting points: xN +wN =LN , xN +wN =MN , xN =MN ,

and xN = UN , it follows that VN(xN ,wN) is differentiable in xN and wN . This verifies claim (iv)

for period N .

Assume the claims hold for period n+ 1 and verify them for period n. Because Vn+1(xn+1,wn+1)

is differentiable in xn+1 and wn+1 by the induction assumption of claim (iv), from definitions (10)-

(12), it follows that H i
n(yn, xn,wn) for i ∈ {U,M,L} is also differentiable in yn, xn, and wn. This

implies that Gi
n for i∈ {U,M,L} is differentiable in yn, xn, and wn from definitions (7)-(9).

Next, we prove the convexity of Gn(yn, xn,wn) in yn, xn, and wn by first showing convexity of

the three subproblems Gi
n(yn, xn,wn) for i = {U,M,L} and then verifying convexity at the two

kink points yn = xn and yn = xn +wn. Given ξn, the cash balance transitions xn+1 and wn+1 are

linear in xn,wn and yn in the three decision cases (see (A.2) and (A.3)). According to Theorem 5.7

of Rockafellar (1970), the convexity of Vn+1(xn+1,wn+1) in xn+1 and wn+1 implies the convexity

of Vn+1(xn+1,wn+1) in yn, xn, and wn in the three cases given ξn. Taking the expectation over

ξn, we have E[Vn+1(xn+1,wn+1)] is also convex in yn, xn, and wn in the three cases. Therefore,

H i
n(yn, xn,wn) for i ∈ {U,M,L} is convex in yn, xn, and wn. This implies that Gi

n(yn, xn,wn) for

i∈ {U,M,L} is also convex in yn, xn, and wn. It remains to check the convexity of Gn at the two

kink points: yn = xn and yn = xn +wn.

From the induction assumption of claim (iii), we first write the following five exhaustive cases

for the value function Vn+1(xn+1,wn+1). If no confusion arises, we drop the arguments xn+1 and

wn+1 from yin+1(xn+1,wn+1) for i∈ {U,M,L}, for ease of notation.

(1) if xn+1 +wn+1 <Ln+1,

Vn+1(xn+1,wn+1) =ρsy
L
n+1− (ρs− ρc)xn+1− (ρs− γn+1(ρ))wn+1

+ ρdE
[
(ξn+1− yLn+1)+

]
+ δHL

n+1(yLn+1, xn+1,wn+1);

(2) if Ln+1 ≤ xn+1 +wn+1 <Mn+1,

Vn+1(xn+1,wn+1) =ρcxn+1 + γn+1(ρ)wn+1 + ρdE
[
(ξn+1−xn+1−wn+1)+

]
+ δHM

n+1(xn+1 +wn+1, xn+1,wn+1);

(3) if xn+1 <Mn+1 ≤ xn+1 +wn+1,

Vn+1(xn+1,wn+1) =ρcy
M
n+1 + (γn+1(ρ)− ρc)(yMn+1−xn+1)

+ ρdE
[
(ξn+1− yMn+1)+

]
+ δHM

n+1(yMn+1, xn+1,wn+1);
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(4) if Mn+1 ≤ xn+1 <Un+1(wn+1),

Vn+1(xn+1,wn+1) = ρcxn+1 + ρdE
[
(ξn+1−xn+1)+

]
+ δHU

n+1(xn+1, xn+1,wn+1);

(5) if xn+1 ≥Un+1(wn+1),

Vn+1(xn+1,wn+1) = ρcy
U
n+1 + ρdE

[
(ξn+1− yUn+1)+

]
+ δHU

n+1(yUn+1, xn+1,wn+1).

Recall from Proposition 1 that Vn+2(xn+2,wn+2) is decreasing in xn+2 and wn+2. Because xn+2 and

wn+2 are increasing xn+1 and wn+1 (see (1) and (2)), it follows that Vn+2(xn+2,wn+2) is decreasing

in xn+1 and wn+1. Therefore, E[Vn+2(xn+2,wn+2)] and Gi
n+1, i ∈ {U,M,L}, are decreasing in xn+1

and wn+1. In other words, ∂xn+1
Gi
n+1 ≤ 0 and ∂wn+1

Gi
n+1 ≤ 0 for i ∈ {U,M,L}. We will utilize

this property to prove the convexity of Gn at the two kink points. We note that given ξn, at

the kink point yn = xn, GU
n and GM

n share the cash balances xn+1 and wn+1; at the kink point

yn = xn +wn, GM
n and GL

n share the cash balances xn+1 and wn+1. Based on the five exhaustive

cases of Vn+1(xn+1,wn+1) above, we obtain the following:

(1) For any ξn such that xn+1 +wn+1 <Ln+1: First, with respect to yn, when ξn < yn, we have

∂ynH
U
n =−ρc(δ∂xn+1

HL
n+1− ρs + ρc),

∂ynH
M
n = (δ∂xn+1

HL
n+1− ρs + ρc)− (1 + ρ)(δ∂wn+1

HL
n+1− ρs + γn+1(ρ)),

∂ynH
L
n =−ρs(δ∂xn+1

HL
n+1− ρs + ρc).

At the kink point yn = xn, we have

∂ynGn |yn↗xn −∂ynGn |yn↘xn

=∂ynG
U
n |yn↗xn −∂ynGM

n |yn↘xn

=∂ynH
U
n + (1 + ρc)ρc−

[
∂ynH

M
n + (1 + ρc)γn(ρ)

]
=(1 + ρ)(δ∂wn+1

HL
n+1− ρs + γn+1(ρ))− (1 + ρc)(δ∂xn+1

HL
n+1− ρs + ρc)− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρ)∂wn+1
GL
n+1− (1 + ρc)(∂xn+1

GL
n+1 + γn(ρ)− ρc)

≤(ρ− ρc)∂wn+1
GL
n+1 ≤ 0,

where the first inequality follows from the induction assumption of claim (ii) and the second

inequality follows from ∂wn+1
GL
n+1 ≤ 0. At the kink point yn = xn +wn, we have

∂ynGn |yn↗(xn+wn) −∂ynGn |yn↘(xn+wn)

=∂ynG
M
n |yn↗(xn+wn) −∂ynGL

n |yn↘(xn+wn)

=∂ynH
M
n + (1 + ρc)γn(ρ)−

[
∂ynH

L
n + (1 + ρc)ρs

]
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=(1 + ρs)(δ∂xn+1
HL
n+1− ρs + ρc)− (1 + ρ)(δ∂wn+1

HL
n+1− ρs + γn+1(ρ))− (1 + ρc)(ρs− γn(ρ))

=(1 + ρs)∂xn+1
GL
n+1− (1 + ρ)∂wn+1

GL
n+1− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρs)∂xn+1
GL
n+1− (1 + γN−n(ρ))∂wn+1

GL
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + γN−n(ρ))

(
1 + ρs

1 + γN−n(ρ)
∂xn+1

GL
n+1− ∂wn+1

GL
n+1

)
− (1 + ρc)(ρs− γn(ρ))≤ 0,

where the first inequality follows from γN−n(ρ)≥ γN(ρ) = ρ and ∂wn+1
GL
n+1 ≤ 0, and the last

inequality follows from the induction assumption of claim (ii). Therefore, Gn is convex in yn

at the two kink points. Similarly, when ξn ≥ yn, it can be verified that Gn is convex in yn at

the two kink points.

Second, with respect to xn, we have

∂xnH
U
n = (1 + ρc)(δ∂xn+1

HL
n+1− ρs + ρc) = (1 + ρc)∂xn+1

GL
n+1, (A.4)

∂xnH
M
n = (1 + ρ)(δ∂wn+1

HL
n+1− ρs + γn+1(ρ)),

∂xnH
L
n = (1 + ρs)(δ∂xn+1

HL
n+1− ρs + ρc).

By using the induction assumption of claim (ii) and the fact that ∂wn+1
GL
n+1 ≤ 0, it can be

verified that Gn is convex in xn at the two kink points.

Finally, with respect to wn, we have

∂wnH
U
n = ∂wnH

M
n = (1 + ρ)(δ∂wn+1

HL
n+1− ρs + γn+1(ρ)) = (1 + ρ)∂wn+1

GL
n+1, (A.5)

∂wnH
L
n = (1 + ρs)(δ∂xn+1

HL
n+1− ρs + ρc).

Again, by using the induction assumption of claim (ii) and the fact that ∂wn+1
GL
n+1 ≤ 0, it can

be verified that Gn is convex in wn at the two kink points. Therefore, we have verified that

Gn(yn, xn,wn) is convex in yn, xn, and wn at the two kink points yn = xn and yn = xn +wn.

(2) For any ξn such that Ln+1 ≤ xn+1 +wn+1 <Mn+1: First, with respect to yn, when ξn < yn,

∂ynH
U
n =−ρc∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

−ρc(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc),

∂ynH
M
n =−ρ∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc)− (1 + ρ)δ∂wn+1

HM
n+1,

∂ynH
L
n =−ρs∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

−ρs(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc).

At the kink point yn = xn, we have

∂ynGn |yn↗xn −∂ynGn |yn↘xn

=∂ynG
U
n |yn↗xn −∂ynGM

n |yn↘xn

=∂ynH
U
n + (1 + ρc)ρc−

[
∂ynH

M
n + (1 + ρc)γn(ρ)

]
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=(ρ− ρc)∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρ)δ∂wn+1
HM
n+1

− (1 + ρc)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc)− (1 + ρc)(γn(ρ)− ρc)

=(ρ− ρc)∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρ)∂wn+1
GM
n+1− (1 + ρc)(∂xn+1

GM
n+1 + γn(ρ)− ρc)

≤(1 + ρ)∂wn+1
GM
n+1− (1 + ρc)(∂xn+1

GM
n+1 + γn(ρ)− ρc)

≤(ρ− ρc)∂wn+1
GM
n+1 ≤ 0,

where the first inequality follows from ∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

≤ ∂yn+1
GM
n+1 |yn+1=Mn+1

= 0

(due to convexity), the second inequality follows from the induction assumption of claim (ii),

and the last inequality follows from ∂wn+1
GM
n+1 ≤ 0. At the kink point yn = xn +wn, we have

∂ynGn |yn↗(xn+wn) −∂ynGn |yn↘(xn+wn)

=∂ynG
M
n |yn↗(xn+wn) −∂ynGL

n |yn↘(xn+wn)

=∂ynH
M
n + (1 + ρc)γn(ρ)−

[
∂ynH

L
n + (1 + ρc)ρs

]
=(ρs− ρ)∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρs)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc)

− (1 + ρ)δ∂wn+1
HM
n+1− (1 + ρc)(ρs− γn(ρ))

=(ρs− ρ)∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρs)∂xn+1
GM
n+1− (1 + ρ)∂wn+1

GM
n+1

− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρs)∂xn+1
GM
n+1− (1 + ρ)∂wn+1

GM
n+1− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρs)∂xn+1
GM
n+1− (1 + γN−n(ρ))∂wn+1

GM
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + γN−n(ρ))

(
1 + ρs

1 + γN−n(ρ)
∂xn+1

GM
n+1− ∂wn+1

GM
n+1

)
− (1 + ρc)(ρs− γn(ρ))≤ 0,

where the first inequality follows from ∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

≤ ∂yn+1
GM
n+1 |yn+1=Mn+1

= 0

(due to convexity), the second inequality follows from γN−n(ρ)≥ γN(ρ) = ρ and ∂wn+1
GM
n+1 ≤ 0,

and the third inequality is from the induction assumption of claim (ii). Therefore, Gn is convex

in yn at the two kink points. Similarly, when ξn ≥ yn, it can be verified that Gn is convex in

yn at the two kink points.

Second, with respect to xn, we have

∂xnH
U
n = (1 + ρc)∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρc)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc), (A.6)

∂xnH
M
n = (1 + ρ)∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρ)δ∂wn+1
HM
n+1,

∂xnH
L
n = (1 + ρs)∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρs)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc).

By using the induction assumption of claim (ii) and the fact that ∂θG
M
n+1 ≤ 0, θ ∈ {xn+1,wn+1},

and ∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

≤ 0 (discussed above), it can be verified that Gn is convex in xn

at the two kink points.
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Finally, with respect to wn, we have

∂wnH
U
n = ∂wnH

M
n = (1 + ρ)∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρ)δ∂wn+1
HM
n+1, (A.7)

∂wnH
L
n = (1 + ρs)∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+(1 + ρs)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc).

Again, by using the induction assumption of claim (ii) and the fact that ∂θG
M
n+1 ≤ 0, θ ∈

{xn+1,wn+1}, and ∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

≤ 0 (discussed above), it can be verified that Gn is

convex in wn at the two kink points. Therefore, we have verified that Gn(yn, xn,wn) is convex

in yn, xn, and wn at the two kink points yn = xn and yn = xn +wn.

(3) For any ξn such that xn+1 <Mn+1 ≤ xn+1 +wn+1: First, with respect to yn, when ξn < yn,

∂ynH
U
n =−ρc(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc),

∂ynH
M
n = (δ∂xn+1

HM
n+1− γn+1(ρ) + ρc)− (1 + ρ)δ∂wn+1

HM
n+1,

∂ynH
L
n =−ρs(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc).

At the kink point yn = xn, we have

∂ynGn |yn↗xn −∂ynGn |yn↘xn

=∂ynG
U
n |yn↗xn −∂ynGM

n |yn↘xn

=∂ynH
U
n + (1 + ρc)ρc−

[
∂ynH

M
n + (1 + ρc)γn(ρ)

]
=(1 + ρ)δ∂wn+1

HM
n+1− (1 + ρc)(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc)− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρ)∂wn+1
GM
n+1− (1 + ρc)(∂xn+1

GM
n+1 + γn(ρ)− ρc)

≤(ρ− ρc)∂wn+1
GM
n+1 ≤ 0,

where the first inequality follows from the induction assumption of claim (ii), and the second

inequality follows from ∂wn+1
GM
n+1 ≤ 0. At the kink point yn = xn +wn, we have

∂ynGn |yn↗(xn+wn) −∂ynGn |yn↘(xn+wn)

=∂ynG
M
n |yn↗(xn+wn) −∂ynGL

n |yn↘(xn+wn)

=∂ynH
M
n + (1 + ρc)γn(ρ)−

[
∂ynH

L
n + (1 + ρc)ρs

]
=(1 + ρs)(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc)− (1 + ρ)δ∂wn+1

HM
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + ρs)∂xn+1
GM
n+1− (1 + ρ)∂wn+1

GM
n+1− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρs)∂xn+1
GM
n+1− (1 + γN−n(ρ))∂wn+1

GM
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + γN−n(ρ))

(
1 + ρs

1 + γN−n(ρ)
∂xn+1

GM
n+1− ∂wn+1

GM
n+1

)
− (1 + ρc)(ρs− γn(ρ))≤ 0,
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where the first inequality follows from γN−n(ρ)≥ γN(ρ) = ρ and ∂wn+1
GM
n+1 ≤ 0, and the second

inequality follows from the induction assumption of claim (ii). Therefore, Gn is convex in yn

at the two kink points. Similarly, when ξn ≥ yn, it can be verified that Gn is convex in yn at

the two kink points.

Second, with respect to xn, we have

∂xnH
U
n = (1 + ρc)(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc) = (1 + ρc)∂xn+1

GM
n+1, (A.8)

∂xnH
M
n = (1 + ρ)δ∂wn+1

HM
n+1,

∂xnH
L
n = (1 + ρs)(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc).

By using the induction assumption of claim (ii) and the fact that ∂θG
M
n+1 ≤ 0, θ ∈ {xn+1,wn+1},

it can be verified that Gn is convex in xn at the two kink points.

Finally, with respect to wn, we have

∂wnH
U
n = ∂wnH

M
n = (1 + ρ)δ∂wn+1

HM
n+1 = (1 + ρ)∂wn+1

GM
n+1, (A.9)

∂wnH
L
n = (1 + ρs)(δ∂xn+1

HM
n+1− γn+1(ρ) + ρc).

Again, by using the induction assumption of claim (ii) and the fact that ∂θG
M
n+1 ≤ 0, θ ∈

{xn+1,wn+1}, it can be verified that Gn is convex in wn at the two kink points. Therefore, we

have verified that Gn(yn, xn,wn) is convex in yn, xn, and wn at the two kink points yn = xn

and yn = xn +wn.

(4) For any ξn such that Mn+1 ≤ xn+1 <Un+1(wn+1), in this case,

Vn+1(xn+1,wn+1) =ρcxn+1 + ρdE
[
(ξn+1−xn+1)+

]
+ δHU

n+1(xn+1, xn+1,wn+1)

=ρcxn+1 + ρdE
[
(ξn+1−xn+1)+

]
+ δHM

n+1(xn+1, xn+1,wn+1).

The last equation holds because yn+1 = xn+1 is the kink point of the cash balances xn+2 and

wn+2, and thus, HU
n+1 =HM

n+1 =E[Vn+2(xn+2,wn+2)] at yn+1 = xn+1. First, with respect to yn,

when ξn < yn,

∂ynH
U
n =−ρc∂yn+1

GM
n+1 |yn+1=xn+1

−ρc(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc),

∂ynH
M
n = ∂yn+1

GM
n+1 |yn+1=xn+1

+(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc)− (1 + ρ)δ∂wn+1

HM
n+1

= ∂yn+1
GU
n+1 |yn+1=xn+1

+δ∂xn+1
HU
n+1− (1 + ρ)δ∂wn+1

HU
n+1,

∂ynH
L
n =−ρs∂yn+1

GU
n+1 |yn+1=xn+1

−ρsδ∂xn+1
HU
n+1.

At the kink point yn = xn, we have

∂ynGn |yn↗xn −∂ynGn |yn↘xn
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=∂ynG
U
n |yn↗xn −∂ynGM

n |yn↘xn

=∂ynH
U
n + (1 + ρc)ρc−

[
∂ynH

M
n + (1 + ρc)γn(ρ)

]
=− (1 + ρc)∂yn+1

GM
n+1 |yn+1=xn+1

+(1 + ρ)δ∂wn+1
HM
n+1

− (1 + ρc)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc)− (1 + ρc)(γn(ρ)− ρc)

=− (1 + ρc)∂yn+1
GM
n+1 |yn+1=xn+1

+(1 + ρ)∂wn+1
GM
n+1− (1 + ρc)(∂xn+1

GM
n+1 + γn(ρ)− ρc)

≤(1 + ρ)∂wn+1
GM
n+1− (1 + ρc)(∂xn+1

GM
n+1 + γn(ρ)− ρc)

≤(ρ− ρc)∂wn+1
GM
n+1 ≤ 0,

where the first inequality follows from ∂yn+1
GM
n+1 |yn+1=xn+1

≥ ∂yn+1
GM
n+1 |yn+1=Mn+1

= 0 (due to

convexity), the second inequality follows from the induction assumption of claim (ii), and the

last inequality follows from ∂wn+1
GM
n+1 ≤ 0. At the kink point yn = xn +wn, we have

∂ynGn |yn↗(xn+wn) −∂ynGn |yn↘(xn+wn)

=∂ynG
M
n |yn↗(xn+wn) −∂ynGL

n |yn↘(xn+wn)

=∂ynH
M
n + (1 + ρc)γn(ρ)−

[
∂ynH

L
n + (1 + ρc)ρs

]
=(1 + ρs)∂yn+1

GU
n+1 |yn+1=xn+1

+(1 + ρs)δ∂xn+1
HU
n+1− (1 + ρ)δ∂wn+1

HU
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + ρs)∂yn+1
GU
n+1 |yn+1=xn+1

+(1 + ρs)∂xn+1
GU
n+1− (1 + ρ)∂wn+1

GU
n+1− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρs)∂xn+1
GU
n+1− (1 + ρ)∂wn+1

GU
n+1− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρs)∂xn+1
GU
n+1− (1 + γN−n(ρ))∂wn+1

GU
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + γN−n(ρ))

(
1 + ρs

1 + γN−n(ρ)
∂xn+1

GU
n+1− ∂wn+1

GU
n+1

)
− (1 + ρc)(ρs− γn(ρ))≤ 0,

where the first inequality follows from ∂yn+1
GU
n+1 |yn+1=xn+1

≤ ∂yn+1
GU
n+1 |yn+1=Un+1(wn+1)= 0

(due to convexity), the second inequality follows from γN−n(ρ)≥ γN(ρ) = ρ and ∂wn+1
GU
n+1 ≤ 0,

and the third inequality is from the induction assumption of claim (ii). Therefore, Gn is convex

in yn at the two kink points. Similarly, when ξn ≥ yn, it can be verified that Gn is convex in

yn at the two kink points.

Second, with respect to xn, we have

∂xnH
U
n = (1 + ρc)∂yn+1

GM
n+1 |yn+1=xn+1

+(1 + ρc)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc)

≤(1 + ρc)(δ∂xn+1
HM
n+1− γn+1(ρ) + ρc) = (1 + ρc)∂xn+1

GM
n+1, (A.10)

∂xnH
M
n = (1 + ρ)δ∂wn+1

HM
n+1 = (1 + ρ)δ∂wn+1

HU
n+1,

∂xnH
L
n = (1 + ρs)∂yn+1

GU
n+1 |yn+1=xn+1

+(1 + ρs)δ∂xn+1
HU
n+1.
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By using the induction assumption of claim (ii) and the fact that ∂θG
M
n+1 ≤ 0, θ ∈ {xn+1,wn+1},

∂yn+1
GM
n+1 |yn+1=xn+1

≥ 0 and ∂yn+1
GU
n+1 |yn+1=xn+1

≤ 0 (discussed above), it can be verified that

Gn is convex in xn at the two kink points.

Finally, with respect to wn, we have

∂wnH
U
n = ∂wnH

M
n = (1 + ρ)δ∂wn+1

HU
n+1 = (1 + ρ)∂wn+1

GU
n+1, (A.11)

∂wnH
L
n = (1 + ρs)∂yn+1

GU
n+1 |yn+1=xn+1

+(1 + ρs)δ∂xn+1
HU
n+1.

Again, by using the induction assumption of claim (ii) and the fact that ∂θG
M
n+1 ≤ 0, θ ∈

{xn+1,wn+1}, ∂yn+1
GM
n+1 |yn+1=xn+1

≥ 0 and ∂yn+1
GU
n+1 |yn+1=xn+1

≤ 0 (discussed above), it can

be verified that Gn is convex in wn at the two kink points. Therefore, we have verified that

Gn(yn, xn,wn) is convex in yn, xn, and wn at the two kink points yn = xn and yn = xn +wn.

(5) For any ξn such that xn+1 ≥Un+1(wn+1), First, with respect to yn, when ξn < yn,

∂ynH
U
n =−ρcδ∂xn+1

HU
n+1,

∂ynH
M
n = δ∂xn+1

HU
n+1− (1 + ρ)δ∂wn+1

HU
n+1,

∂ynH
L
n =−ρsδ∂xn+1

HU
n+1.

At the kink point yn = xn, we have

∂ynGn |yn↗xn −∂ynGn |yn↘xn

=∂ynG
U
n |yn↗xn −∂ynGM

n |yn↘xn

=∂ynH
U
n + (1 + ρc)ρc−

[
∂ynH

M
n + (1 + ρc)γn(ρ)

]
=(1 + ρ)δ∂wn+1

HU
n+1− (1 + ρc)δ∂xn+1

HU
n+1− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρ)∂wn+1
GU
n+1− (1 + ρc)(∂xn+1

GU
n+1 + γn(ρ)− ρc)

≤(ρ− ρc)∂wn+1
GU
n+1 ≤ 0,

where the first inequality follows from the induction assumption of claim (ii), and the second

inequality follows from ∂wn+1
GU
n+1 ≤ 0. At the kink point yn = xn +wn, we have

∂ynGn |yn↗(xn+wn) −∂ynGn |yn↘(xn+wn)

=∂ynG
M
n |yn↗(xn+wn) −∂ynGL

n |yn↘(xn+wn)

=∂ynH
M
n + (1 + ρc)γn(ρ)−

[
∂ynH

L
n + (1 + ρc)ρs

]
=(1 + ρs)δ∂xn+1

HU
n+1− (1 + ρ)δ∂wn+1

HU
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + ρs)∂xn+1
GU
n+1− (1 + ρ)∂wn+1

GU
n+1− (1 + ρc)(ρs− γn(ρ))
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≤(1 + ρs)∂xn+1
GU
n+1− (1 + γN−n(ρ))∂wn+1

GU
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + γN−n(ρ))

(
1 + ρs

1 + γN−n(ρ)
∂xn+1

GU
n+1− ∂wn+1

GU
n+1

)
− (1 + ρc)(ρs− γn(ρ))≤ 0,

where the first inequality follows from γN−n(ρ)≥ γN(ρ) = ρ and ∂wn+1
GU
n+1 ≤ 0, and the second

inequality is from the induction assumption of claim (ii). Therefore, Gn is convex in yn at the

two kink points. Similarly, when ξn ≥ yn, it can be verified that Gn is convex in yn at the two

kink points.

Second, with respect to xn, we have

∂xnH
U
n = (1 + ρc)δ∂xn+1

HU
n+1 = (1 + ρc)∂xn+1

GU
n+1, (A.12)

∂xnH
M
n = (1 + ρ)δ∂wn+1

HU
n+1,

∂xnH
L
n = (1 + ρs)δ∂xn+1

HU
n+1.

By using the induction assumption of claim (ii) and the fact that ∂θG
U
n+1 ≤ 0, θ ∈ {xn+1,wn+1},

it can be verified that Gn is convex in xn at the two kink points.

Finally, with respect to wn, we have

∂wnH
U
n = ∂wnH

M
n = (1 + ρ)δ∂wn+1

HU
n+1 = (1 + ρ)∂wn+1

GU
n+1, (A.13)

∂wnH
L
n = (1 + ρs)δ∂xn+1

HU
n+1.

Again, by using the induction assumption of claim (ii) and the fact that ∂θG
U
n+1 ≤ 0, θ ∈

{xn+1,wn+1}, it can be verified that Gn is convex in wn at the two kink points. Therefore, we

have verified that Gn(yn, xn,wn) is convex in yn, xn, and wn at the two kink points yn = xn

and yn = xn +wn.

We have shown that given ξn, Gn is convex in yn, xn, and wn at the two kink points yn = xn

and yn = xn+wn. Taking expectation over ξn yields that Gn is convex in yn, xn, and wn at the two

kink points yn = xn and yn = xn +wn. Together with the convexity of Gi
n for i∈ {U,M,L} in three

subproblems, it follows that Gn is convex in yn, xn, and wn, which verifies that claim (i) holds for

period n.

Now, based on the first-order derivative of H i
n for i∈ {U,M,L}, in the five cases above, we verify

claim (ii) holds for period n. We first observe from the five cases that ∂xnH
i
n = ∂wnH

i
n, i∈ {M,L}.

This implies that

1 + ρs
1 + γN−n+1(ρ)

∂xnG
M
n ≤ ∂xnGM

n = δ∂xnH
M
n − γn(ρ) + ρc ≤ δ∂wnHM

n = ∂wnG
M
n

and

∂wnG
M
n = δ∂wnH

M
n = δ∂xnH

M
n ≤ (δ∂xnH

M
n − γn(ρ) + ρc) + (γn−1(ρ)− ρc) = ∂xnG

M
n + γn−1(ρ)− ρc.
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It can be similarly verified that 1+ρs
1+γN−n+1(ρ)

∂xnG
L
n ≤ ∂wnGL

n ≤ ∂xnGL
n + γn−1(ρ)− ρc. Further, from

the derivations in the five cases, we can observe that ∂wnH
M
n = ∂wnH

U
n . This implies that

∂wnG
U
n = δ∂wnH

U
n = δ∂wnH

M
n = δ∂xnH

M
n =∂xnG

M
n + γn(ρ)− ρc

≤∂xnGU
n + γn(ρ)− ρc ≤ ∂xnGU

n + γn−1(ρ)− ρc,

where the first inequality follows from ∂xnG
M
n |xn↗yn≤ ∂xnGU

n |xn↘yn shown in the five cases above,

and the second inequality is from the fact that γn−1(ρ)>γn(ρ).

It remains to check 1+ρs
1+γN−n+1

∂xnG
U
n ≤ ∂wnGU

n in claim (ii). First, in the cases of (1) and (3)-(5) of

Vn+1, we find that ∂xnH
U
n ≤ (1 + ρc)∂xn+1

Gi
n+1, and ∂wnH

U
n = (1 + ρ)∂wn+1

Gi
n+1 for i ∈ {U,M,L},

see (A.4)-(A.5) and (A.8)-(A.13). Thus, for any i∈ {U,M,L},

1 + ρs
1 + γN−n+1(ρ)

∂xnG
U
n − ∂wnGU

n =
1 + ρs

1 + γN−n+1(ρ)
δ∂xnH

U
n − δ∂wnHU

n

≤ 1 + ρs
1 + γN−n+1(ρ)

δ(1 + ρc)∂xn+1
Gi
n+1− δ(1 + ρ)∂wn+1

Gi
n+1

=δ(1 + ρ)

[
1 + ρs

1 + γN−n(ρ)
∂xn+1

Gi
n+1− ∂wn+1

Gi
n+1

]
≤ 0.

The last inequality follows from the induction assumption of claim (ii). Second, in the case of (2),

replacing ∂xnH
U
n and ∂wnH

U
n with (A.6) and (A.7) yields

1 + ρs
1 + γN−n+1(ρ)

∂xnG
U
n − ∂wnGU

n

=
1 + ρs

1 + γN−n+1(ρ)
δ∂xnH

U
n − δ∂wnHU

n

=δ

[
1 + ρs

1 + γN−n+1(ρ)
(1 + ρc)− (1 + ρ)

]
∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+
1 + ρs

1 + γN−n+1(ρ)
δ(1 + ρc)∂xn+1

GM
n+1− δ(1 + ρ)∂wn+1

GM
n+1

=δ(1 + ρ)

[
1 + ρs

1 + γN−n(ρ)
− 1

]
∂yn+1

GM
n+1 |yn+1=xn+1+wn+1

+ δ(1 + ρ)

[
1 + ρs

1 + γN−n(ρ)
∂xn+1

GM
n+1− ∂wn+1

GM
n+1

]
≤δ(1 + ρ)

[
1 + ρs

1 + γN−n(ρ)
∂xn+1

GM
n+1− ∂wn+1

GM
n+1

]
≤ 0,

where the first inequality is from the fact that ρs > γN−n(ρ) and ∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

≤ 0 in

this case (as discussed in the case (2)), and the last inequality follows from the induction assumption

of claim (ii). Therefore, we have verified claim (ii) for period n.

Next, we prove the optimal cash policy in period n in claim (iii). To obtain this result, we first

show that yMn (xn,wn) and yLn (xn,wn) depend on xn+wn only, while yUn (xn,wn) depends on xn and

wn, separately. Based on which we define the three critical levels that satisfy Ln ≤Mn ≤ Un(wn).
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Recall that Gi
n(yn, xn,wn) for i ∈ {U,M,L} is differentiable and convex in yn as shown above.

Also observe that limyn→±∞G
i
n(yn, xn,wn) =∞. Then the optimal cash level (13) can be uniquely

determined by:

yUn (xn,wn) = min{yn | ∂ynGU
n ≥ 0}= min{yn | ρc + ρdF (yn)− ρd + δ∂ynH

U
n ≥ 0},

yMn (xn,wn) = min{yn | ∂ynGM
n ≥ 0}= min{yn | γn(ρ) + ρdF (yn)− ρd + δ∂ynH

M
n ≥ 0},

yLn (xn,wn) = min{yn | ∂ynGL
n ≥ 0}= min{yn | ρs + ρdF (yn)− ρd + δ∂ynH

L
n ≥ 0}.

Observe that the dependence of the optimal cash level yin(xn,wn) on xn and wn is from ∂ynH
i
n.

From the first-order derivative of H i
n in the five cases of Vn+1 above, the term ∂ynH

i
n only depends

on xn+1 and xn+1 + wn+1, through which it depends on xn and wn. Specifically, from the state

transition equations (A.2) and (A.3), in the subproblems of xn < yn ≤ xn +wn and yn > xn +wn

(corresponding to yMn (xn,wn) and yLn (xn,wn)), both xn+1 and xn+1 +wn+1 depend only on xn+wn.

Therefore, in these two subproblems, ∂ynH
i
n for i ∈ {M,L}, depends on xn +wn only. Hence the

unconstrained optimal solutions yMn (xn,wn) and yLn (xn,wn) are dependent on xn +wn only. With

slight abuse of notation, we rewrite them as yMn (xn +wn) and yLn (xn +wn), respectively. Based on

the dependence discussed above, we can define the three critical levels as

Un(wn) = min{xn | yUn (xn,wn) = xn}= min{xn | ∂ynGU
n |yn=xn≥ 0}, (A.14)

Mn = min{xn +wn | yMn (xn +wn) = xn +wn}= min{xn +wn | ∂ynGM
n |yn=xn+wn≥ 0}, (A.15)

Ln = min{xn +wn | yLn (xn +wn) = xn +wn}= min{xn +wn | ∂ynGL
n |yn=xn+wn≥ 0}, (A.16)

where the second equation of all three critical levels follows from the convexity of Gi
n in yn. It is

clear from the definitions that Un(wn) depends only on wn, and Mn and Ln do not depend on xn

and wn. Observe that in the expression ∂ynH
U
n in each of the five cases of Vn+1, only the terms

(−∂yn+1
GM
n+1 |yn+1=xn+1+wn+1

) and (−∂xn+1
HL
n+1) depend on wn. Recall that GM

n+1 and HL
n+1 are

convex in yn+1, xn+1 and wn+1, so these negative terms are decreasing in xn+1 and wn+1. Note that

xn+1 and wn+1 are both increasing in wn. Therefore, ∂ynH
U
n is decreasing in wn. Hence, ∂ynG

U
n is

decreasing in wn. From (A.14), it follows that Un(wn) is increasing in wn.

We next show that the three critical levels satisfy Ln ≤Mn ≤ Un(wn). First, consider the case

xn + wn = Ln. In this case, yLn (xn + wn) = Ln, and ∂ynG
L
n(yn, xn,wn) |yn=Ln= 0. Since yn = xn +

wn is a kink point of Gn(yn, xn,wn) and Gn(yn, xn,wn) is convex in yn, we have ∂ynG
M
n |yn=Ln≤

∂ynG
L
n |yn=Ln= 0. Since ∂ynG

M
n is increasing in yn due to convexity, we have Mn ≥ Ln based on

definition (A.15). Second, consider the case xn =Mn and wn = 0. In this case, based on the definition

of Mn given in (A.15), we have ∂ynG
M
n |yn=Mn= 0. Since yn = xn is a kink point of Gn(yn, xn,wn)

and Gn(yn, xn,wn) is convex in yn, we have ∂ynG
U
n |yn=Mn≤ ∂ynGM

n |yn=Mn= 0. Because ∂ynG
U
n is
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increasing in yn due to convexity, we have Un(0)≥Mn based on definition (A.14) (note that wn = 0

in this case). As we have shown Un(wn) is increasing in wn, it follows that Un(wn)≥Mn for any

wn ≥ 0. Therefore, we arrive at Ln ≤Mn ≤Un(wn).

The optimal cash policy is based on the convexity of Gn(yn, xn,wn) in yn and Ln ≤Mn ≤Un(wn).

According to the equations (A.14)-(A.16), when yn ≤ xn, if xn ≥ Un(wn), the optimal cash level

decision y∗n = yUn (xn,wn); and when xn < Un(wn), the optimal cash level decision y∗n = xn due to

the constraint yn ≤ xn. Similarly, in the case of xn < yn ≤ xn+wn, when xn+wn <Mn, the optimal

cash decision y∗n is xn +wn due to the constraint yn ≤ xn +wn; when xn <Mn and xn +wn ≥Mn,

the optimal cash decision y∗n is yMn (xn +wn); when xn ≥Mn, the optimal cash decision y∗n is xn

due to the constraint yn >xn. Finally, in the case of yn >xn+wn, when xn+wn ≥Ln, the optimal

cash decision y∗n is xn +wn, and when xn +wn <Ln, the optimal cash decision y∗n is yLn (xn +wn).

Combining all these results yields the optimal policy structure given by claim (iii) for period n.

Finally, we prove the convexity and differentiability of Vn(xn,wn) in xn and wn. Based on the

convexity of Gn(yn, xn,wn) in xn and wn, from Theorem 5.7 of Rockafellar (1970), it follows that

Vn(xn,wn) is convex in xn and wn. Based on the optimal cash policy shown above, we can write

the value function as

Vn(xn,wn) =



GL
n(yLn (xn +wn), xn,wn) if xn +wn <Ln,

GM
n (xn +wn, xn,wn) if Ln ≤ xn +wn <Mn,

GM
n (yMn (xn +wn), xn,wn) if xn <Mn ≤ xn +wn,

GU
n (xn, xn,wn) if Mn ≤ xn <Un(wn),

GU
n (yUn (xn,wn), xn,wn) if xn ≥Un(wn).

Recall that Gi
n for i∈ {U,M,L} is differentiable in xn and wn. By applying the envelope theorem

to each of the five segments of Vn(xn,wn) as well as recognizing that Gn is differentiable in xn

and wn at the four connecting points: xn +wn =Ln, xn +wn =Mn, xn =Mn, and xn =Un(wn), it

follows that Vn(xn,wn) is differentiable in xn and wn, and thus claim (iv) holds for period n. This

completes the induction proof. �

Proof of Proposition 3

First, we show that Ψ = 0 if cash demand ξn is deterministic. Specifically, if there is no cash flow

uncertainty, i.e., ξn is deterministic and ξn ≤ 0, then the supplier can set yn = 0 in each period to

achieve a minimum cost of V1(·, ·) = 0. Plugging this into the definition of Ψ, we then have Ψ = 0.

Next, we show Ψ is decreasing in ρ and increasing in W . According to the monotonicity property

specified in Proposition 1, the cost function V1(x1,w1) is decreasing in w1. Increasing ρ or decreasing

W will decrease W/(1 + ρ)N , which results in the increase of V1 (X,W/(1 + ρ)N). Since V1(X,0)

does not change according to ρ and W , we then have Ψ being decreasing in ρ and increasing in

W . �
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Proof of Proposition 4

First, the cash flow cost V1 with the payment due date N = 1 can be written as

V1(x1,w1) =min
y1

{
ρcy1 + ρdE(ξ1− y1)+ + (ρ− ρc)min

{
(y1−x1)+,w1

}
+ (ρs− ρc)(y1−x1−w1)+

}
.

As we have shown in the proof of Proposition 2, the objective function GN(yN , xN ,wN) is convex

in yN . This means that with N = 1, the objective function G1(y1, x1,w1) is also convex in y1.

According to the definition of yin from (13), we can write their closed-form solutions as follows,

yL1 = F−1

(
ρd− ρs
ρd

)
, yM1 = F−1

(
ρd− ρ
ρd

)
, yU1 = F−1

(
ρd− ρc
ρd

)
.

These three optimal cash levels are also equivalent to their corresponding critical levels L1,M1 and

U1. For ease of notation, we denote them as L,M and U , respectively.

Recall that the cash demand follows a normal distribution with its cumulative distribution

function F (·). We then have F−1(·) = µ+σΦ−1(·), where Φ(·) is the cumulative distribution func-

tion (CDF) of the standard normal distribution. Denote the probability density function (PDF)

of the standard normal distribution as φ(·). The value of payables finance is Ψ = δV1 (X,0) −
δV1 (X,W/(1 + ρ)N). Based on the optimal cash policy, we rewrite the value functions V1 (X,0)

and V1 (X,W/(1 + ρ)N) with N = 1.

V1 (X,0) =


G1(L,x1,0) if x1 <L,

G1(x1, x1,0) if L≤ x1 <M,

G1(U,x1,0) if x1 ≥U ;

V1 (X,W/(1 + ρ)) =



G1(L,x1,w1) if x1 +w1 <L,

G1(x1 +w1, x1,w1) if L≤ x1 +w1 <M,

G1(M,x1,w1) if x1 +w1 ≥M and x1 <M,

G1(x1, x1,w1) if M ≤ x1 <U,

G1(U,x1,w1) if x1 ≥U.

We first rewrite the expectation formula as

E(ξ− y)+ =

∫ ∞
y

ξf(ξ)dξ− y(1−F (y)) =

∫ ∞
y

[
µf(ξ)−σ2f ′(ξ)

]
dξ− y(1−F (y))

= (µ− y)(1−F (y)) +σ2f(y) = (µ− y)

[
1−Φ

(
y−µ
σ

)]
+σφ

(
y−µ
σ

)
, (A.17)

where the last equation follows from the fact that f(y) = 1
σ
φ
(
y−µ
σ

)
.

Next, we prove effects of ρs and σ case by case.

(1) When x1 + w1 < L, the value of payables finance can be written as Ψ =

δ [G1(L,x1,0)−G1(L,x1,w1)] = ρs−ρ
(1+ρ)(1+ρc)

W . Thus, Ψ is increasing in ρs and independent of

σ.
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(2) When L≤ x1 +w1 <M and x1 <L, we have

δ−1Ψ =G1(L,x1,0)−G1(x1 +w1, x1,w1)

= ρdE(ξ1−L)+− ρdE(ξ1−x1−w1)+ + ρs(L−x1)− ρw1

= ρd

∫ ∞
L

ξf(ξ)dξ− ρsL− ρdE(ξ1−x1−w1)+ + ρs(L−x1)− ρw1

= µρs +σρdφ

(
Φ−1

(
ρd− ρs
ρd

))
− ρd(µ−x1−w1)

[
1−Φ

(
x1 +w1−µ

σ

)]
−σρdφ

(
x1 +w1−µ

σ

)
− ρsx1− ρw1.

The last equation follows from (A.17). Taking the derivative of the third equation above with

respect to ρs yields

∂ρsδ
−1Ψ = ρd (−Lf(L))∂ρsL−x1 =L−x1 > 0,

where f(L) = 1
σ
φ
(

Φ−1
(
ρd−ρs
ρd

))
and ∂ρsL = −σ 1

ρd
Φ−1

(
ρd−ρs
ρd

)′
= −σ 1

ρd

1

φ
(

Φ−1
(
ρd−ρs
ρd

)) . Thus,

Ψ is increasing in ρs. Similarly, taking the derivative of the last equation of δ−1Ψ above with

respect to σ yields

∂σδ
−1Ψ =ρdφ

(
Φ−1

(
ρd− ρs
ρd

))
+ ρd(µ−x1−w1)2φ

(
x1 +w1−µ

σ

)
σ−2

− ρdφ
(
x1 +w1−µ

σ

)
−σρd

(
−(x1 +w1−µ)2

σ

)
φ

(
x1 +w1−µ

σ

)
(−σ−2)

=ρdφ

(
Φ−1

(
ρd− ρs
ρd

))
− ρdφ

(
x1 +w1−µ

σ

)
.

Suppose that ρd > 2ρs. Then, we have ρd−ρs
ρd
≥ 1

2
, and thus x1+w1−µ

σ
≥ L−µ

σ
= Φ−1

(
ρd−ρs
ρd

)
≥ 0.

This yields ∂σδ
−1Ψ≥ 0. Therefore, Ψ is increasing in σ when ρd > 2ρs.

(3) When L≤ x1 +w1 <M and L≤ x1 <U , we have

δ−1Ψ =G1(x1, x1,0)−G1(x1 +w1, x1,w1) = ρdE(ξ1−x1)+− ρdE(ξ1−x1−w1)+− ρw1

=ρd(µ−x1)

[
1−Φ

(
x1−µ
σ

)]
+ ρdσφ

(
x1−µ
σ

)
− ρd(µ−x1−w1)

[
1−Φ

(
x1 +w1−µ

σ

)]
− ρdσφ

(
x1 +w1−µ

σ

)
− ρw1.

In this case, Ψ is independent of ρs. Taking derivative with respect to σ yields

∂σδ
−1Ψ =− ρd(µ−x1)2φ

(
x1−µ
σ

)
σ−2 + ρdφ

(
x1−µ
σ

)
+ ρdσφ

(
x1−µ
σ

)(
−(x1−µ)2

σ

)
(−σ2)

+ ρd(µ−x1−w1)2φ

(
x1 +w1−µ

σ

)
σ−2− ρdφ

(
x1 +w1−µ

σ

)
− ρdσφ

(
x1 +w1−µ

σ

)(
−(x1 +w1−µ)2

σ

)
(−σ2)
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=ρdφ

(
x1−µ
σ

)
− ρdφ

(
x1 +w1−µ

σ

)
≥ 0,

where the last inequality follows from µ≤ 0 and x1 ≤ x1 +w1. Thus, Ψ is increasing in σ.

(4) When x1 +w1 ≥M,x1 <M and x1 <L, we have

δ−1Ψ =G1(L,x1,0)−G1(M,x1,w1) = ρdE(ξ1−L)+− ρdE(ξ1−M)+ + ρsL− ρM − (ρs− ρ)x1

=σρd

[
φ

(
Φ−1

(
ρd− ρs
ρd

))
−φ

(
Φ−1

(
ρd− ρ
ρd

))]
+µ(ρs− ρ)− (ρs− ρ)x1.

Taking its derivative with respect to ρs, we have

∂ρsδ
−1Ψ =σρd

(
−Φ−1

(
ρd− ρs
ρd

))
φ

(
Φ−1

(
ρd− ρs
ρd

))
1

φ
(

Φ−1

(
ρd−ρs
ρd

)) (− 1

ρd

)
+µ−x1

=µ+σΦ−1

(
ρd− ρs
ρd

)
−x1 =L−x1 > 0

Thus, Ψ is increasing in ρs. We then take derivative with respect to σ, and obtain

∂σδ
−1Ψ =ρd

[
φ

(
Φ−1

(
ρd− ρs
ρd

))
−φ

(
Φ−1

(
ρd− ρ
ρd

))]
.

Suppose that ρd > 2ρs. Then, we have ρd−ρs
ρd
≥ 1

2
, and thus Φ−1

(
ρd−ρ
ρd

)
= M−µ

σ
≥ L−µ

σ
=

Φ−1
(
ρd−ρs
ρd

)
≥ 0. This yields ∂σδ

−1Ψ≥ 0. Therefore, Ψ is increasing in σ when ρd > 2ρs.

(5) When x1 +w1 ≥M,x1 <M and x1 <L, we have L≤ x1 <U , we have

δ−1Ψ =G1(x1, x1,0)−G1(M,x1,w1) = ρdE(ξ1−x1)+− ρdE(ξ1−M)+− ρ(M −x1)

=ρd(µ−x1)

[
1−Φ

(
x1−µ
σ

)]
+ ρdσφ

(
x1−µ
σ

)
−µρ−σρdφ

(
Φ−1

(
ρd− ρ
ρd

))
− ρx1.

In this case, Ψ is independent of ρs. Taking derivative with respect to σ yields

∂σδ
−1Ψ =ρdφ

(
x1−µ
σ

)
− ρdφ

(
Φ−1

(
ρd− ρ
ρd

))
.

Suppose that ρd > 2ρs. Then, we have ρd−ρ
ρd

> ρd−ρs
ρd
≥ 1

2
, and thus Φ−1

(
ρd−ρ
ρd

)
= M−µ

σ
≥ x1−µ

σ
≥

0. This yields ∂σδ
−1Ψ≥ 0. Therefore, Ψ is increasing in σ when ρd > 2ρs.

(6) When M ≤ x1 < U , the value of payables finance is Ψ = δ [G1(x1, x1,0)−G1(x1, x1,w1)] = 0,

which is independent of ρs and σ.

(7) When x1 ≥U , the value of payables finance is Ψ = δ [G1(U,x1,0)−G1(U,x1,w1)] = 0, which is

independent of ρs and σ.

Therefore, the value of payables finance Ψ is (weakly) increasing in ρs in all cases, and (weakly)

increasing in σ when ρd > 2ρs. �
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Proof of Proposition 5

First, we show that ∆∗ is decreasing in ρ. Recall from (17) that

Ψ(∆) =δ
[
V1 (X,0)−V1

(
X,W/(1 + ρ)N+∆

)]
− (1 + ρ)∆− 1

(1 + ρ)∆
δNW.

The first term V1 (X,0) is independent of ρ since no payables finance amount exists. Regarding the

second term V1 (X,W/(1 + ρ)N+∆), as ρ increases, the initial payables finance amountW/(1+ρ)N+∆

decreases, and as a result, V1 (X,W/(1 + ρ)N+∆) increases according to the monotonicity property

of V1(x1,w1) with respect to w1 in Proposition 1. For the third term, it is clear that (1+ρ)∆−1

(1+ρ)∆
δNW

increases in ρ. Combining all of them yields that Ψ(∆) decreases in ρ. With the same reasoning, as

∆ increases, the terms V1 (X,W/(1 + ρ)N+∆) and (1+ρ)∆−1

(1+ρ)∆
δNW also increase. Thus, Ψ(∆) decreases

in ∆. Since the equilibrium payment term extension ∆∗ is defined by ∆∗ = max{∆≥ 0 | s.t. Ψ(∆)≥

0}, we have ∆∗ being decreasing in ρ.

In the following, we consider the case in which N = 1 and cash flow follows a normal distri-

bution. We first show that ∆∗ is increasing in σ when ρd > 2ρs. Recall that Ψ = δV1 (X,0) −

δV1 (X,W/(1 + ρ)N) is increasing in σ when ρd > 2ρs in Proposition 4. Since Ψ(∆) is similar to Ψ

with its different terms being independent of σ, then Ψ(∆) is also increasing in σ when ρd > 2ρs.

Because Ψ(∆) is decreasing in ∆ as shown above, we can obtain that ∆∗ is increasing in σ when

ρd > 2ρs.

We then show that ∆∗ may be either increasing or decreasing in W , by providing two cases

discussed in the proof of Proposition 4. In the first case of x1 +w1 <L, we have

Ψ(∆) =
ρs− ρ

(1 + ρ)∆+1(1 + ρc)
W − (1 + ρ)∆− 1

(1 + ρ)∆
δNW =

1

(1 + ρ)∆+1(1 + ρc)
W
[
1 + ρs− (1 + ρ)∆+1

]
≥ 0.

The last inequality is from the fact that it is optimal for the supplier to draw from payables finance

before resorting to additional short-term loans, i.e., 1+ρs−(1+ρ)∆+1 ≥ 0. Thus, Ψ(∆) is increasing

in W . Because Ψ(∆) is decreasing in ∆, we can obtain that in this case, ∆∗ is increasing in W .

However, in the second case of x1 ≥M , we have Ψ(∆) = − (1+ρ)∆−1

(1+ρ)∆
δNW , which is decreasing in

W . Opposite to the first case, we have that ∆∗ is decreasing in W . As a result, ∆∗ may be either

increasing or decreasing in W , depending on the level of cash flow uncertainty. �

Proof of Proposition 6

We first prove the system cost lower bound Ṽn(xn,wn) ≤ Vn(xn,wn) for any 1 ≤ n ≤ N using

backward (and forward) induction and the monotonicity property of Vn(xn,wn) in Proposition 1.

We then use backward induction again to show the convexity of G̃n(yn, x̃n, w̃n) and characterize the

optimal cash policy in the approximate system. Its proof is similar to the proof of Proposition 2.
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We finally establish the properties of middle cash level in the optimal cash policy using backward

induction.

System cost lower bound. To show Ṽn(xn,wn)≤ Vn(xn,wn) for any 1≤ n≤N , we first use forward

induction to prove xn ≤ x̃n and wn ≤ w̃n for any 1≤ n≤N . In the first period, we have x̃1 = x1

and w̃1 =w1. Suppose that xn ≤ x̃n and wn ≤ w̃n for any 1≤ n <N . Using forward induction, we

need to prove xn+1 ≤ x̃n+1 and wn+1 ≤ w̃n+1. According to the state transitions, for 1≤ n<N ,

xn+1 =(1 + ρ)
[
xn + min{(yn−xn)+,wn}− ξn

]
− (ρ− ρc)(xn− yn)+− (ρs− ρ)(yn−xn−wn)+− ρ(yn− ξn)+− (ρd− ρ)(ξn− yn)+

≤(1 + ρ)
[
xn + min{(yn−xn)+,wn}− ξn

]
≤(1 + ρ)

[
x̃n + min{(yn− x̃n)+, w̃n}− ξn

]
= x̃n+1,

where the second inequality is from the fact that [xn+min{(yn−xn)+,wn}] is increasing in xn and

wn. Thus, we have xn ≤ x̃n for any 1≤ n≤N . Similarly, for 1≤ n<N ,

wn+1 = (1 + ρ)
[
wn− (yn−xn)+

]+ ≤ (1 + ρ)
[
w̃n− (yn− x̃n)+

]+
= w̃n+1,

where the inequality follows from the fact that [wn− (yn−xn)+]
+

is increasing in xn and wn. Thus,

we have wn ≤ w̃n for any 1 ≤ n ≤N . Based on this result and the monotonicity property of the

value function Vn(xn,wn) shown in Proposition 1, we next show Vn(xn,wn)≥ Ṽn(xn,wn) for any

1≤ n≤N using backward induction. Starting from the last period N , since VN+1(·, ·) = ṼN+1(·, ·) =

0, we have VN(xN ,wN) = ṼN(xN ,wN). Suppose that Vn+1(xn+1,wn+1)≥ Ṽn+1(xn+1,wn+1) for any

1≤ n<N − 1. We check the following:

Vn(xn,wn) = min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn−xn)+,wn

}
+(ρs− ρc)(yn−xn−wn)+ + δE [Vn+1(xn+1,wn+1)]

}
≥min

yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn−xn)+,wn

}
+(ρs− ρc)(yn−xn−wn)+ + δE [Vn+1(x̃n+1, w̃n+1)]

}
≥min

yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn−xn)+,wn

}
+(ρs− ρc)(yn−xn−wn)+ + δE

[
Ṽn+1(x̃n+1, w̃n+1)

]}
= Ṽn(xn,wn),

where the first inequality follows from xn+1 ≤ x̃n+1, wn+1 ≤ w̃n+1 and the monotonicity of Vn+1 in

Proposition 1, and the second inequality follows from Vn+1(xn+1,wn+1)≥ Ṽn+1(xn+1,wn+1) for any

xn+1 and wn+1 in the backward induction assumption. Therefore, we have Vn(xn,wn)≥ Ṽn(xn,wn)

for any 1≤ n≤N .



24 Chen, Yan, and Ding: Optimal Cash Management with Payables Finance

Convexity of G̃n(yn, x̃n, w̃n) and the optimal cash policy. The proof is similar to the proof of

Proposition 2. The state transition equations (20) and (21) in the approximate system can be

written as:

x̃n+1 =


(1 + ρ)(x̃n− ξn) if yn ≤ x̃n,

(1 + ρ)(yn− ξn) if x̃n < yn ≤ x̃n + w̃n,

(1 + ρ)(x̃n + w̃n− ξn) if yn > x̃n + w̃n;

(A.18)

w̃n+1 =


(1 + ρ)w̃n if yn ≤ x̃n,

(1 + ρ)(w̃n + x̃n− yn) if x̃n < yn ≤ x̃n + w̃n,

0 if yn > x̃n + w̃n.

(A.19)

Similar to (7)-(9), we define the three subproblem objective functions as G̃U
n (yn, x̃n, w̃n),

G̃M
n (yn, x̃n, w̃n) and G̃L

n(yn, x̃n, w̃n), and the three expected cost-to-go functions as H̃U
n (yn, x̃n, w̃n),

H̃M
n (yn, x̃n, w̃n) and H̃L

n (yn, x̃n, w̃n) according to the three decision cases yn ≤ x̃n, x̃n < yn ≤ x̃n+ w̃n

and yn > x̃n + w̃n.

Again, for ease of notation, if no confusion arises, we drop the arguments yn, x̃n, and w̃n in

G̃n(yn, x̃n, w̃n), G̃i
n(yn, x̃n, w̃n), and H̃ i

n(yn, x̃n, w̃n) for i ∈ {U,M,L}. In what follows, we use the

backward induction to prove the following claims together: for 1≤ n≤N ,

(i) G̃i
n, i∈ {U,M,L}, is differentiable in yn, x̃n, and w̃n. Gn is convex in yn, x̃n, and w̃n;

(ii) ρc− γn(ρ)≤ ∂x̃nG̃U
n − ∂w̃nG̃U

n ≤ 0, and ∂x̃nG̃
i
n− ∂w̃nG̃i

n = ρc− γn(ρ) for i ∈ {M,L}; Moreover,

∂x̃nG̃
U
n − ∂w̃nG̃U

n only depends on x̃n (not on w̃n);

(iii) There exist three optimal cash levels L ≤ M̃n ≤ U , such that the optimal cash policy y†n is

given by

y†n =



L= F−1
(
ρd−ρs
ρd

)
if x̃n + w̃n <L,

x̃n + w̃n if L≤ x̃n + w̃n < M̃n,

M̃n if x̃n < M̃n ≤ x̃n + w̃n,

x̃n if M̃n ≤ x̃n <U,

U = F−1(ρd−ρc
ρd

) if x̃n ≥U ;

(iv) Ṽn(x̃n, w̃n) is convex and differentiable in x̃n and w̃n.

We first verify that these claims hold for the last period N . We then assume they hold for period

n+ 1 and prove that they are also true for period n, completing the backward induction.

First, for period N , the dynamic program (22) in the approximate system is the same as the

original dynamic program (5), due to ṼN+1(·, ·) = VN+1(·, ·) = 0. Thus, similar to the verification

of the claims for period N in the proof of Proposition 2, it can also be similarly verified that the

claims above hold for the last period N in the approximate system.
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We now assume the claims hold for period n+ 1 and verify them for period n. Again, it can be

similarly verified the differentiability and convexity of G̃i
n, i∈ {U,M,L}, in yn, x̃n and w̃n (see the

proof of Proposition 2). It remains to check the convexity of G̃n at the two kink points yn = x̃n and

yn = x̃n + w̃n in claim (i). From the induction assumption of claim (iii), the five exhaustive cases

for the value function Ṽn(x̃n, w̃n) can be written as the follows.

(1) if x̃n+1 + w̃n+1 <L,

Ṽn+1(x̃n+1, w̃n+1) =ρsL− (ρs− ρc)x̃n+1− (ρs− γn+1(ρ))w̃n+1

+ ρdE
[
(ξn+1−L)+

]
+ δH̃L

n+1(L, x̃n+1, w̃n+1);

(2) if L≤ x̃n+1 + w̃n+1 < M̃n+1,

Ṽn+1(x̃n+1, w̃n+1) =ρcx̃n+1 + γn+1(ρ)w̃n+1 + ρdE
[
(ξn+1− x̃n+1− w̃n+1)+

]
+ δH̃M

n+1(x̃n+1 + w̃n+1, x̃n+1, w̃n+1);

(3) if x̃n+1 < M̃n+1 ≤ x̃n+1 + w̃n+1,

Ṽn+1(x̃n+1, w̃n+1) =ρcM̃n+1 + (γn+1(ρ)− ρc)(M̃n+1− x̃n+1)

+ ρdE
[
(ξn+1− M̃n+1)+

]
+ δH̃M

n+1(M̃n+1, x̃n+1, w̃n+1);

(4) if M̃n+1 ≤ x̃n+1 <U ,

Ṽn+1(x̃n+1, w̃n+1) = ρcx̃n+1 + ρdE
[
(ξn+1− x̃n+1)+

]
+ δH̃U

n+1(x̃n+1, x̃n+1, w̃n+1);

(5) if x̃n+1 ≥U ,

Ṽn+1(x̃n+1, w̃n+1) = ρcU + ρdE
[
(ξn+1−U)+

]
+ δH̃U

n+1(U, x̃n+1, w̃n+1).

Note that, the optimal cash levels L,M̃n+1 and U are independent of the cash balances x̃n+1 and

w̃n+1. Similar to the proof of convexity at the two kink points in Proposition 2, based on these five

exhaustive cases of Ṽn+1(x̃n+1, w̃n+1) above, we obtain the following:

(1) For any ξn such that x̃n+1 + w̃n+1 <L: First, with respect to yn, we have

∂ynH̃
U
n = ∂ynH̃

L
n = 0, ∂ynH̃

M
n = (1 + ρ)∂x̃n+1

G̃L
n+1− (1 + ρ)∂w̃n+1

G̃L
n+1.

At the kink point yn = x̃n, we have

∂ynG̃n |yn↗x̃n −∂ynG̃n |yn↘x̃n

=∂ynG̃
U
n |yn↗x̃n −∂ynG̃M

n |yn↘x̃n
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=∂ynH̃
U
n + (1 + ρc)ρc−

[
∂ynH̃

M
n + (1 + ρc)γn(ρ)

]
=(1 + ρ)∂w̃n+1

G̃L
n+1− (1 + ρ)∂x̃n+1

G̃L
n+1− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρ)(γn+1(ρ)− ρc)− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρc)

[
1 + ρ

1 + ρc
(γn+1(ρ) + 1)− (1 + ρ)− γn(ρ) + ρc

]
=(1 + ρc)(ρc− ρ)≤ 0,

where the last equation follows from the fact that 1+ρ
1+ρc

(γn+1(ρ) + 1) = γn(ρ) + 1. At the kink

point yn = x̃n + w̃n, we have

∂ynG̃n |yn↗(x̃n+w̃n) −∂ynG̃n |yn↘(x̃n+w̃n)

=∂ynG̃
M
n |yn↗(x̃n+w̃n) −∂ynG̃L

n |yn↘(x̃n+w̃n)

=∂ynH̃
M
n + (1 + ρc)γn(ρ)−

[
∂ynH̃

L
n + (1 + ρc)ρs

]
=(1 + ρ)∂x̃n+1

G̃L
n+1− (1 + ρ)∂w̃n+1

G̃L
n+1− (1 + ρc)(ρs− γn(ρ))

=(1 + ρ)(ρc− γn+1(ρ))− (1 + ρc)(ρs− γn(ρ))≤ 0,

where the last equation follows from ∂x̃n+1
G̃L
n+1 − ∂w̃n+1

G̃L
n+1 = ρc − γn+1(ρ) in the induction

assumption of claim (ii). Therefore, G̃n is convex in yn at the two kink points.

Second, with respect to x̃n, we have

∂x̃nH̃
U
n = ∂x̃nH̃

L
n = (1 + ρ)∂x̃n+1

G̃L
n+1, ∂x̃nH̃

M
n = (1 + ρ)∂w̃n+1

G̃L
n+1.

By using the induction assumption of claim (ii), it can be verified that G̃n is convex in x̃n at

the two kink points.

Finally, with respect to w̃n, we have

∂w̃nH̃
U
n = ∂w̃nH̃

M
n = (1 + ρ)∂w̃n+1

G̃L
n+1, ∂w̃nH̃

L
n = (1 + ρ)∂x̃n+1

G̃L
n+1.

Again, by using the induction assumption of claim (ii), it can be verified that G̃n is convex in

w̃n at the two kink points. Therefore, we have verified that G̃n(yn, x̃n, w̃n) is convex in yn, x̃n,

and w̃n at the two kink points yn = x̃n and yn = x̃n + w̃n.

(2) For any ξn such that L≤ x̃n+1 + w̃n+1 < M̃n+1: First, with respect to yn, we have

∂ynH̃
U
n = ∂ynH̃

L
n = 0, ∂ynH̃

M
n = (1 + ρ)∂x̃n+1

G̃M
n+1− (1 + ρ)∂w̃n+1

G̃M
n+1.

Following from ∂x̃n+1
G̃M
n+1−∂w̃n+1

G̃M
n+1 = ∂x̃n+1

G̃L
n+1−∂w̃n+1

G̃L
n+1 in the induction assumption

of claim (ii), this case is the same as the case (1). Thus, by using the induction assumption of

claim (ii), it can be similarly verified that G̃n is convex in yn at the two kink points.
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Second, with respect to x̃n, we have

∂x̃nH̃
U
n = ∂x̃nH̃

L
n = (1 + ρ)∂yn+1

G̃M
n+1 |yn+1=x̃n+1+w̃n+1

+(1 + ρ)∂x̃n+1
G̃M
n+1,

∂x̃nH̃
M
n = (1 + ρ)∂yn+1

G̃M
n+1 |yn+1=x̃n+1+w̃n+1

+(1 + ρ)∂w̃n+1
G̃M
n+1.

By using the induction assumption of claim (ii), it can be verified that G̃n is convex in x̃n at

the two kink points.

Finally, with respect to w̃n, we have

∂w̃nH̃
U
n = ∂w̃nH̃

M
n = (1 + ρ)∂yn+1

G̃M
n+1 |yn+1=x̃n+1+w̃n+1

+(1 + ρ)∂w̃n+1
G̃M
n+1,

∂w̃nH̃
L
n = (1 + ρ)∂yn+1

G̃M
n+1 |yn+1=x̃n+1+w̃n+1

+(1 + ρ)∂x̃n+1
G̃M
n+1.

Again, by using the induction assumption of claim (ii), it can be verified that G̃n is convex in

w̃n at the two kink points. Therefore, we have verified that G̃n(yn, x̃n, w̃n) is convex in yn, x̃n,

and w̃n at the two kink points yn = x̃n and yn = x̃n + w̃n.

(3) For any ξn such that x̃n+1 < M̃n+1 ≤ x̃n+1 + w̃n+1: First, with respect to yn, we have

∂ynH̃
U
n = ∂ynH̃

L
n = 0, ∂ynH̃

M
n = (1 + ρ)∂x̃n+1

G̃M
n+1− (1 + ρ)∂w̃n+1

G̃M
n+1.

This is the same as the case (2) above. Thus, by using the induction assumption of claim (ii),

it can be similarly verified that G̃n is convex in yn at the two kink points.

Second, with respect to x̃n, we have

∂x̃nH̃
U
n = ∂x̃nH̃

L
n = (1 + ρ)∂x̃n+1

G̃M
n+1, ∂x̃nH̃

M
n = (1 + ρ)∂w̃n+1

G̃M
n+1.

By using the induction assumption of claim (ii), it can be verified that G̃n is convex in x̃n at

the two kink points.

Finally, with respect to w̃n, we have

∂w̃nH̃
U
n = ∂w̃nH̃

M
n = (1 + ρ)∂w̃n+1

G̃M
n+1, ∂w̃nH̃

L
n = (1 + ρ)∂x̃n+1

G̃M
n+1.

Again, by using the induction assumption of claim (ii), it can be verified that G̃n is convex in

w̃n at the two kink points. Therefore, we have verified that G̃n(yn, x̃n, w̃n) is convex in yn, x̃n,

and w̃n at the two kink points yn = x̃n and yn = x̃n + w̃n.

(4) For any ξn such that M̃n+1 ≤ x̃n+1 <U , in this case,

Ṽn+1(x̃n+1, w̃n+1) =ρcx̃n+1 + ρdE
[
(ξn+1− x̃n+1)+

]
+ δH̃U

n+1(x̃n+1, x̃n+1, w̃n+1)

=ρcx̃n+1 + ρdE
[
(ξn+1− x̃n+1)+

]
+ δH̃M

n+1(x̃n+1, x̃n+1, w̃n+1).
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The last equation holds because yn+1 = x̃n+1 is the kink point of the cash balances x̃n+2 and

w̃n+2, and thus, H̃U
n+1 = H̃M

n+1 =E[Ṽn+2(x̃n+2, w̃n+2)] at yn+1 = x̃n+1. First, with respect to yn,

we have

∂ynH̃
U
n =∂ynH̃

L
n = 0,

∂ynH̃
M
n =(1 + ρ)∂yn+1

G̃U
n+1 |yn+1=x̃n+1

+(1 + ρ)∂x̃n+1
G̃U
n+1− (1 + ρ)∂w̃n+1

G̃U
n+1

=(1 + ρ)∂yn+1
G̃M
n+1 |yn+1=x̃n+1

+(1 + ρ)∂x̃n+1
G̃M
n+1− (1 + ρ)∂w̃n+1

G̃M
n+1.

At the kink point yn = x̃n, we have

∂ynG̃n |yn↗x̃n −∂ynG̃n |yn↘x̃n

=∂ynG̃
U
n |yn↗x̃n −∂ynG̃M

n |yn↘x̃n

=∂ynH̃
U
n + (1 + ρc)ρc−

[
∂ynH̃

M
n + (1 + ρc)γn(ρ)

]
=− (1 + ρ)∂yn+1

G̃M
n+1 |yn+1=x̃n+1

+(1 + ρ)∂w̃n+1
G̃M
n+1− (1 + ρ)∂x̃n+1

G̃M
n+1− (1 + ρc)(γn(ρ)− ρc)

≤(1 + ρ)∂w̃n+1
G̃M
n+1− (1 + ρ)∂x̃n+1

G̃M
n+1− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρ)(γn+1(ρ)− ρc)− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρc)

[
1 + ρ

1 + ρc
(γn+1(ρ) + 1)− (1 + ρ)− γn(ρ) + ρc

]
=(1 + ρc)(ρc− ρ)≤ 0,

where the first inequality follows from ∂yn+1
G̃M
n+1 |yn+1=x̃n+1

≥ ∂yn+1
G̃M
n+1 |yn+1=M̃n+1

= 0 (due to

convexity), and the last equation follows from the fact that 1+ρ
1+ρc

(γn+1(ρ) + 1) = γn(ρ) + 1. At

the kink point yn = x̃n + w̃n, we have

∂ynG̃n |yn↗(x̃n+w̃n) −∂ynG̃n |yn↘(x̃n+w̃n)

=∂ynG̃
M
n |yn↗(x̃n+w̃n) −∂ynG̃L

n |yn↘(x̃n+w̃n)

=∂ynH̃
M
n + (1 + ρc)γn(ρ)−

[
∂ynH̃

L
n + (1 + ρc)ρs

]
=(1 + ρ)∂yn+1

G̃U
n+1 |yn+1=x̃n+1

+(1 + ρ)∂x̃n+1
G̃U
n+1− (1 + ρ)∂w̃n+1

G̃U
n+1− (1 + ρc)(ρs− γn(ρ))

≤(1 + ρ)∂x̃n+1
G̃U
n+1− (1 + ρ)∂w̃n+1

G̃U
n+1− (1 + ρc)(ρs− γn(ρ))

≤− (1 + ρc)(ρs− γn(ρ))≤ 0

where the first inequality follows from ∂yn+1
G̃U
n+1 |yn+1=x̃n+1

≤ ∂yn+1
G̃U
n+1 |yn+1=U= 0 (due to

convexity), and the second inequality follows from ∂x̃n+1
G̃U
n+1 ≤ ∂w̃n+1

G̃U
n+1 in the induction

assumption of claim (ii). Therefore, G̃n is convex in yn at the two kink points.

Second, with respect to x̃n, we have

∂x̃nH̃
U
n = ∂x̃nH̃

L
n = (1 + ρ)∂yn+1

G̃i
n+1 |yn+1=x̃n+1

+(1 + ρ)∂x̃n+1
G̃i
n+1, i∈ {U,M},
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∂x̃nH̃
M
n = (1 + ρ)∂w̃n+1

G̃i
n+1, i∈ {U,M}.

By using the induction assumption of claim (ii) and the fact that ∂yn+1
G̃M
n+1 |yn+1=x̃n+1

≥ 0 and

∂yn+1
G̃U
n+1 |yn+1=x̃n+1

≤ 0, it can be verified that G̃n is convex in x̃n at the two kink points.

Finally, with respect to w̃n, we have

∂w̃nH̃
U
n = (1 + ρ)∂w̃n+1

G̃i
n+1, i∈ {U,M},

∂w̃nH̃
L
n = (1 + ρ)∂yn+1

G̃M
n+1 |yn+1=x̃n+1

+(1 + ρ)∂x̃n+1
G̃i
n+1, i∈ {U,M}.

Again, by using the induction assumption of claim (ii) and the fact that ∂yn+1
G̃M
n+1 |yn+1=x̃n+1

≥ 0

and ∂yn+1
G̃U
n+1 |yn+1=x̃n+1

≤ 0, it can be verified that G̃n is convex in w̃n at the two kink points.

Therefore, we have verified that G̃n(yn, x̃n, w̃n) is convex in yn, x̃n, and w̃n at the two kink

points yn = x̃n and yn = x̃n + w̃n.

(5) For any ξn such that x̃n+1 ≥U : First, with respect to yn, we have

∂ynH̃
U
n =∂ynH̃

L
n = 0, ∂ynH̃

M
n = (1 + ρ)∂x̃n+1

G̃U
n+1− (1 + ρ)∂w̃n+1

G̃U
n+1.

At the kink point yn = x̃n, we have

∂ynG̃n |yn↗x̃n −∂ynG̃n |yn↘x̃n

=∂ynG̃
U
n |yn↗x̃n −∂ynG̃M

n |yn↘x̃n

=∂ynH̃
U
n + (1 + ρc)ρc−

[
∂ynH̃

M
n + (1 + ρc)γn(ρ)

]
=(1 + ρ)∂w̃n+1

G̃U
n+1− (1 + ρ)∂x̃n+1

G̃U
n+1− (1 + ρc)(γn(ρ)− ρc)

≤(1 + ρ)(γn+1(ρ)− ρc)− (1 + ρc)(γn(ρ)− ρc)

=(1 + ρc)

[
1 + ρ

1 + ρc
(γn+1(ρ) + 1)− (1 + ρ)− γn(ρ) + ρc

]
=(1 + ρc)(ρc− ρ)≤ 0,

where the first inequality follows from ∂w̃n+1
G̃U
n+1− ∂x̃n+1

G̃U
n+1 ≤ γn+1(ρ)− ρc in the induction

assumption of claim (ii), and the last equation follows from the fact that 1+ρ
1+ρc

(γn+1(ρ) + 1) =

γn(ρ) + 1. At the kink point yn = x̃n + w̃n, we have

∂ynG̃n |yn↗(x̃n+w̃n) −∂ynG̃n |yn↘(x̃n+w̃n)

=∂ynG̃
M
n |yn↗(x̃n+w̃n) −∂ynG̃L

n |yn↘(x̃n+w̃n)

=∂ynH̃
M
n + (1 + ρc)γn(ρ)−

[
∂ynH̃

L
n + (1 + ρc)ρs

]
=(1 + ρ)∂x̃n+1

G̃U
n+1− (1 + ρ)∂w̃n+1

G̃U
n+1− (1 + ρc)(ρs− γn(ρ))

≤− (1 + ρc)(ρs− γn(ρ))≤ 0,
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where the first inequality follows from ∂x̃n+1
G̃U
n+1 ≤ ∂w̃n+1

G̃U
n+1 in the induction assumption of

claim (ii). Therefore, G̃n is convex in yn at the two kink points.

Second, with respect to x̃n, we have

∂x̃nH̃
U
n = ∂x̃nH̃

L
n = (1 + ρ)∂x̃n+1

G̃U
n+1, ∂x̃nH̃

M
n = (1 + ρ)∂w̃n+1

G̃U
n+1.

By using the induction assumption of claim (ii), it can be verified that G̃n is convex in x̃n at

the two kink points.

Finally, with respect to w̃n, we have

∂w̃nH̃
U
n = ∂w̃nH̃

M
n = (1 + ρ)∂w̃n+1

G̃U
n+1, ∂w̃nH̃

L
n = (1 + ρ)∂x̃n+1

G̃U
n+1.

Again, by using the induction assumption of claim (ii), it can be verified that G̃n is convex in

w̃n at the two kink points. Therefore, we have verified that G̃n(yn, x̃n, w̃n) is convex in yn, x̃n,

and w̃n at the two kink points yn = x̃n and yn = x̃n + w̃n.

We have shown that given ξn, G̃n is convex in yn, x̃n, and w̃n at the two kink points yn = x̃n and

yn = x̃n + w̃n. Taking expectation over ξn yields that G̃n is convex in yn, x̃n, and w̃n at the two

kink points yn = x̃n and yn = x̃n + w̃n. Together with the convexity of G̃i
n for i∈ {U,M,L} in three

subproblems, it follows that G̃n is convex in yn, x̃n, and w̃n, which verifies that claim (i) holds for

period n.

Now, based on the first-order derivative of H̃ i
n for i∈ {U,M,L}, in the five cases above, we verify

that claim (ii) holds for period n. We first observe from the five cases that ∂x̃nH̃
i
n = ∂w̃nH̃

i
n for

i∈ {M,L}. This implies that

∂x̃nG̃
M
n − ∂w̃nG̃M

n = (δ∂x̃nH̃
M
n − γn(ρ) + ρc)− δ∂w̃nH̃M

n = ρc− γn(ρ).

It can be similarly verified that ∂x̃nG̃
L
n − ∂w̃nG̃L

n = ρc − γn(ρ). Moreover, we find that ∂x̃nH̃
U
n −

∂w̃nH̃
U
n = (1 + ρ)(∂x̃n+1

G̃i
n+1 − ∂w̃n+1

G̃i
n+1), i ∈ {U,M,L}, in the cases of (1)-(3) and (5), and

∂x̃nH̃
U
n − ∂w̃nH̃U

n ≥ (1 + ρ)(∂x̃n+1
G̃M
n+1 − ∂w̃n+1

G̃M
n+1) in the case of (4). Thus, we have: for i ∈

{U,M,L},

∂x̃nG̃
U
n − ∂w̃nG̃U

n = δ∂x̃nH̃
U
n − δ∂w̃nH̃U

n ≥δ(1 + ρ)(∂x̃n+1
G̃i
n+1− ∂w̃n+1

G̃i
n+1)

≥δ(1 + ρ)(ρc− γn+1(ρ)) = (1 + ρ)− δ(1 + ρ)(1 + γn+1(ρ))

=ρ− γn(ρ)≥ ρc− γn(ρ),

where the second inequality follows from ∂x̃n+1
G̃i
n+1 − ∂w̃n+1

G̃i
n+1 ≥ ρc − γn+1(ρ), i ∈ {U,M,L} in

the induction assumption of claim (ii). Furthermore, in the cases of (4), we also observe that

∂x̃nH̃
U
n − ∂w̃nH̃U

n ≤ (1 + ρ)(∂x̃n+1
G̃U
n+1− ∂w̃n+1

G̃U
n+1). Thus, we have

∂x̃nG̃
U
n − ∂w̃nG̃U

n = δ∂x̃nH̃
U
n − δ∂w̃nH̃U

n ≤δ(1 + ρ)(∂x̃n+1
G̃i
n+1− ∂w̃n+1

G̃i
n+1)≤ 0,
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where the second inequality follows from ∂x̃n+1
G̃i
n+1−∂w̃n+1

G̃i
n+1 ≤ 0, i∈ {U,M,L} in the induction

assumption of claim (ii). It remains to check that ∂x̃nG̃
U
n −∂w̃nG̃U

n only depends on the cash balance

x̃n. As we have discussed above, in the cases of (1)-(3), we have ∂x̃nG̃
U
n − ∂w̃nG̃U

n = δ(∂x̃nH̃
U
n −

∂w̃nH̃
U
n ) = δ(1 + ρ)(∂x̃n+1

G̃i
n+1 − ∂w̃n+1

G̃i
n+1), i ∈ {M,L}, which is independent of both x̃n and w̃n

from the induction assumption of claim (ii). In the case of (4), we have

∂x̃nG̃
U
n − ∂w̃nG̃U

n =δ(∂x̃nH̃
U
n − ∂w̃nH̃U

n )

=δ(1 + ρ)
[
∂yn+1

G̃U
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃U
n+1− ∂w̃n+1

G̃U
n+1

]
,

with x̃n+1 = (1 +ρ)x̃n− ξn corresponding to the “U” case (i.e., yn ≤ x̃n). Since ∂yn+1
H̃U
n+1 = 0, then

the first term only depends on x̃n+1, through which it only depends on x̃n from its corresponding

state transitions. Also, ∂x̃n+1
G̃U
n+1 − ∂w̃n+1

G̃U
n+1 depends on x̃n+1 in the induction assumption of

claim (ii), through which it only depends on x̃n from its corresponding state transitions. Therefore,

∂x̃nG̃
U
n − ∂w̃nG̃U

n only depends on x̃n in the case of (4). It can be similarly verified that ∂x̃nG̃
U
n −

∂w̃nG̃
U
n only depends on x̃n in the case of (5). Altogether, we have verified claim (ii) for period n.

We next verify the claims (iii) and (iv) for period n. The proof is similar to the proof of Propo-

sition 2. In the following, we only focus on their difference in the optimal cash policy, that is, all

three optimal cash levels in the approximate system are independent of the cash balances x̃n and

w̃n. Similar to (13), we define the optimal cash levels ỹUn (x̃n, w̃n), ỹMn (x̃n, w̃n) and ỹLn (x̃n, w̃n) as the

unconstrained optimal solutions to the three subproblems:

ỹUn (x̃n, w̃n) = min{yn | ∂ynG̃U
n ≥ 0}= min{yn | ρc + ρdF (yn)− ρd + δ∂ynH̃

U
n ≥ 0},

ỹMn (x̃n, w̃n) = min{yn | ∂ynG̃M
n ≥ 0}= min{yn | γn(ρ) + ρdF (yn)− ρd + δ∂ynH̃

M
n ≥ 0}, (A.20)

ỹLn (x̃n, w̃n) = min{yn | ∂ynG̃L
n ≥ 0}= min{yn | ρs + ρdF (yn)− ρd + δ∂ynH̃

L
n ≥ 0}.

From the first-order derivative of H̃ i
n for i ∈ {U,M,L}, in the five cases above, we have ∂ynH̃

U
n =

∂ynH̃
L
n = 0. This implies that ỹUn (x̃n, w̃n) =U = F−1(ρd−ρc

ρd
) and ỹLn (x̃n, w̃n) =L= F−1(ρd−ρs

ρd
).

Furthermore, from ∂ynH̃
M
n in the five cases above, we have ∂ynH̃

M
n = (1 + ρ)(∂x̃n+1

G̃i
n+1 − (1 +

ρ)∂w̃n+1
G̃i
n+1) = (1 + ρ)(ρc − γn+1(ρ)), i ∈ {M,L}, in the cases of (1)-(3), which is independent of

both x̃n and w̃n from the induction assumption of claim (ii). Combining all cases, we have

∂ynH̃
M
n =

∫ +∞

yn−M̃n+1/(1+ρ)

(1 + ρ)(ρc− γn+1(ρ))f(ξ)dξ

+

∫ yn−M̃n+1/(1+ρ)

yn−U/(1+ρ)

(1 + ρ)
[
∂yn+1

G̃i
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃i
n+1− ∂w̃n+1

G̃i
n+1

]
f(ξ)dξ

+

∫ yn−U/(1+ρ)

−∞
(1 + ρ)

[
∂x̃n+1

G̃U
n+1− ∂w̃n+1

G̃U
n+1

]
f(ξ)dξ. (A.21)
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Note that, the term (∂yn+1
G̃U
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃U
n+1 − ∂w̃n+1

G̃U
n+1) only depends on x̃n+1 (see

the proof of claim (ii) above), which does not depend on x̃n and w̃n from its corresponding state

transition x̃n+1 = (1 + ρ)yn− ξn. It can be similarly verified that (∂x̃n+1
G̃U
n+1− ∂w̃n+1

G̃U
n+1) is also

independent of both x̃n and w̃n. Therefore, ∂ynH̃
M
n and thus ỹMn (x̃n, w̃n) is independent of both x̃n

and w̃n. We then denote it as M̃n. Therefore, all three optimal cash levels are independent of the

cash balances x̃n and w̃n. The remaining proof of claims (iii) and (iv) is the same as the proof of

Proposition 2.

Optimal middle cash level M̃n. We prove M̃n+1 ≥ M̃n for any 1≤ n<N in the optimal cash policy.

We first verify it for the last period. We then assume it holds for period n+1 and prove that it is also

true for period n, completing the backward induction. Based on the definition of M̃n in A.20, the

sufficient condition of M̃n+1 ≥ M̃n can be written as ∂ynH̃
M
n −∂yn+1

H̃M
n+1 ≥ (1+ρc)(γn+1(ρ)−γn(ρ)).

In the last period N , we have

∂yN−1
H̃M
N−1− ∂yN H̃

M
N = ∂yN−1

H̃M
N−1

=

∫ +∞

yN−1−M̃N/(1+ρ)

(1 + ρ)(ρc− γN(ρ))f(ξ)dξ

+

∫ yN−1−M̃N/(1+ρ)

yN−1−U/(1+ρ)

(1 + ρ)
[
∂yN G̃

M
N |yN=x̃N +∂x̃N G̃

M
N − ∂w̃N G̃

M
N

]
f(ξ)dξ

+

∫ yN−1−U/(1+ρ)

−∞
(1 + ρ)

[
∂x̃N G̃

U
N − ∂w̃N G̃

U
N

]
f(ξ)dξ

≥
∫ +∞

yN−1−M̃N/(1+ρ)

(1 + ρ)(ρc− γN(ρ))f(ξ)dξ+

∫ yN−1−M̃N/(1+ρ)

yN−1−U/(1+ρ)

(1 + ρ)(ρc− γN(ρ))f(ξ)dξ

+

∫ yN−1−U/(1+ρ)

−∞
(1 + ρ)(ρc− γN(ρ))f(ξ)dξ

=(1 + ρ)(ρc− γN(ρ)) = (1 + ρc)(γN(ρ)− γN−1(ρ)).

It follows that M̃N ≥ M̃N−1. Suppose that M̃n+2 ≥ M̃n+1 for any 1≤ n<N −1 in the optimal cash

policy. We then need to check M̃n+1 ≥ M̃n. Given the same cash level y)n= yn+1,

1

1 + ρ
∂ynH̃

M
n =

∫ +∞

yn−M̃n+1/(1+ρ)

(ρc− γn+1(ρ))f(ξ)dξ

+

∫ yn−M̃n+1/(1+ρ)

yn−U/(1+ρ)

[
∂yn+1

G̃M
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃M
n+1− ∂w̃n+1

G̃M
n+1

]
f(ξ)dξ

+

∫ yn−U/(1+ρ)

−∞

[
∂x̃n+1

G̃U
n+1− ∂w̃n+1

G̃U
n+1

]
f(ξ)dξ

=

∫ +∞

yn−M̃n+2/(1+ρ)

(ρc− γn+1(ρ))f(ξ)dξ+

∫ yn−M̃n+2/(1+ρ)

yn−M̃n+1/(1+ρ)

(ρc− γn+1(ρ))f(ξ)dξ

+

∫ yn−M̃n+2/(1+ρ)

yn−U/(1+ρ)

[
∂yn+1

G̃M
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃M
n+1− ∂w̃n+1

G̃M
n+1

]
f(ξ)dξ
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+

∫ yn−M̃n+1/(1+ρ)

yn−M̃n+2/(1+ρ)

[
∂yn+1

G̃M
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃M
n+1− ∂w̃n+1

G̃M
n+1

]
f(ξ)dξ

+

∫ yn−U/(1+ρ)

−∞

[
∂x̃n+1

G̃U
n+1− ∂w̃n+1

G̃U
n+1

]
f(ξ)dξ

≥
∫ +∞

yn−M̃n+2/(1+ρ)

(ρc− γn+1(ρ))f(ξ)dξ+

∫ yn−M̃n+2/(1+ρ)

yn−M̃n+1/(1+ρ)

(ρc− γn+1(ρ))f(ξ)dξ

+

∫ yn−M̃n+2/(1+ρ)

yn−U/(1+ρ)

[
∂yn+1

G̃M
n+1 |yn+1=x̃n+1

+∂x̃n+1
G̃M
n+1− ∂w̃n+1

G̃M
n+1

]
f(ξ)dξ

+

∫ yn−M̃n+1/(1+ρ)

yn−M̃n+2/(1+ρ)

(ρc− γn+1(ρ))f(ξ)dξ+

∫ yn−U/(1+ρ)

−∞

[
∂x̃n+1

G̃U
n+1− ∂w̃n+1

G̃U
n+1

]
f(ξ)dξ

=
1

1 + ρ
∂yn+1

H̃M
n+1 +

∫ +∞

yn−M̃n+2/(1+ρ)

(γn+2(ρ)− γn+1(ρ))f(ξ)dξ

≥ 1

1 + ρ
∂yn+1

H̃M
n+1 + γn+2(ρ)− γn+1(ρ),

where the first inequality follows from ∂yn+1
G̃M
n+1 |yn+1=x̃n+1

≥ ∂yn+1
G̃M
n+1 |yn+1=M̃n+1

= 0 in the case

of M̃n+1 ≤ x̃n+1 < U and ∂x̃n+1
G̃M
n+1 − ∂w̃n+1

G̃M
n+1 = ρc − γn+1(ρc) in the claim (ii), and the last

inequality follows from the fact that γn+2(ρc)<γn+1(ρc). Rearranging the inequality above yields

∂ynH̃
M
n − ∂yn+1

H̃M
n+1 ≥ (1 + ρ)(γn+2(ρ)− γn+1(ρ))

= (1 + ρc)

[
1 + ρ

1 + ρc
(1 + γn+2(ρ))− 1 + ρ

1 + ρc
(1 + γn+1(ρ))

]
= (1 + ρc)(γn+1(ρ)− γn(ρ)).

Therefore, for any 1≤ n≤N , we have M̃n+1 ≥ M̃n. This completes the proof. �

Proof of Proposition 7

For each period n, the cash level decision is independent of the future periods and only minimizes

the cash flow cost in the current period. This is similar to our original problem Gn(yn, xn,wn)

when n = N , since VN+1(·, ·) = 0. As we have shown in the proof of Proposition 2, the original

objective function in the last period GN(yN , xN ,wN) is convex in yN , xN and wN . This implies

that Gm
n (yn, xn,wn) is also convex in yn, xn and wn. Correspondingly, the three optimal cash levels

and critical levels in this myopic problem are equivalent, which are denoted as L= F−1
(
ρd−ρs
ρd

)
,

Mm
n = F−1

(
ρd−γn(ρ)

ρd

)
, and U = F−1

(
ρd−ρc
ρd

)
. These three cash levels satisfy L≤Mm

n ≤U as proved

in the Proposition 2. Therefore, the myopic cash policy can be written as
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ymn =



L= F−1
(
ρd−ρs
ρd

)
if xn +wn <L,

xn +wn if L≤ xn +wn <Mn,

Mn = F−1
(
ρd−γn(ρ)

ρd

)
if xn <Mn ≤ xn +wn,

xn if Mn ≤ xn <U,

U = F−1
(
ρd−ρc
ρd

)
if xn ≥U.

We finally prove Mm
n = F−1(ρd−γn(ρ)

ρd
)≤ M̃n for 1≤ n≤N . From the definition of M̃n in (A.20),

the convexity of G̃M
n in yn implies that ∂ynG̃

M
n is increasing in yn. From equation (A.21) of

∂ynH̃
M
n , it can be easily verified that ∂ynH̃

M
n ≤ 0 due to the claim (ii) and ∂yn+1

G̃U
n+1 |yn+1=x̃n+1

≤

∂yn+1
G̃U
n+1 |yn+1=U= 0 in the case of (4) of Ṽn+1 above (see the proof of Proposition 6). Thus, we

have ∂ynG̃
M
n ≤ γn(ρ) + ρdF (yn)− ρd. Due to an increase of ∂ynG̃

M
n in yn, we have M̃n ≥Mm

n =

F−1(ρd−γn(ρ)

ρd
) for 1≤ n≤N . This completes the proof. �

B. Decoupling Cash Balance Model

We analyze the payables finance problem under the decoupling cash balance assumption of the

classic cash flow literature. We first derive the decoupling cash balance model. Based on which we

characterize its corresponding optimal cash policy.

According to the decoupling assumption, the interest gains and costs are assumed to be separated

from the cash balance itself. Essentially, the decoupling cash balance model features two separate

accounts, the cash pool and the interest account, for cash management. The cash balance evolves

in the cash pool, and the interest gains and costs incurred from the cash pool are in the interest

account so as to evaluate the supplier’s cash management performance. Thus, the cash pool evolves

without being affected by the associated interest gains and costs.

At the beginning of period n, the supplier has an initial cash balance x̂n in the cash pool and ûn

in the separate interest account. Also let ŵn be the net cash amount (after discounting) available

to the supplier to draw from payables finance. The initial balances in the cash pool are still the

same as in the integrated cash balance model, that is, x̂1 =X and ŵ1 =W/(1 + ρ)N . Besides, the

initial balance in the separate interest account is û1 = 0. Specifically, in the cash pool the cash

balance in period n+ 1 (with 1≤ n≤N) can be written as

x̂n+1 = yn− ξn + (x̂n− yn)+− (yn− x̂n− ŵn)+, (A.22)

where (x)+ = max{x,0}. As discussed in §3, the third term in the above expression is the amount

from investment (if any), and the last term is the amount borrowed from additional short-term

loans (if any) after the supplier withdraws all available amount from payables finance. We note
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that the interest rates of both terms are not accounted for the cash balance in the cash pool under

the decoupling assumption. Moreover, the period-to-period cash balance transition (2) for the

withdrawable payables finance amount stays the same (determined by its account establishment),

but grows with the above decoupling cash balance in the cash pool. That is, for 1≤ n≤N ,

ŵn+1 = (1 + ρ)
[
ŵn− (yn− x̂n)+

]+
. (A.23)

In addition, the cash balance in the separate interest account in period n+ 1 (with 1≤ n≤N) can

be written as

ûn+1 = (1 + ρc)ûn− ρd(ξn− yn)+ + ρc(x̂n− yn)+− ρs(yn− x̂n− ŵn)+ + (ρ− ρc)
[
ŵn− (yn− x̂n)+

]+
.

The first term captures the risk-free interest return of owning cash balance ûn in period n, the

second term denotes the interest cost if the ending balance is negative in the period, the third term

is the risk-free interest gain from investments, the fourth term represents the interest cost of using

additional short-term loans, and the last term denotes the extra earning interest of keeping the

payables finance amount unused.

As discussed above, the separate interest account is intended for evaluating the supplier’s cash

management performance in the decoupling cash balance model. Therefore, different from the

integrated cash balance model, the objective for the supplier is to maximize the discounted total

cash balance in the interest account, denoted as Π̂(X,W ), at the beginning of the terminal period

N + 1, which can be written as

Π̂(X,W ) = max
{y1,...,yN}

δNE [ûN+1] , (A.24)

where {y1, ..., yN} is the unconstrained cash level policy for each period before the payment due

date N . With some term substitution and rearrangement, we can transform problem (A.24) into

a cost minimization problem as follows (see the proof of Proposition B.1 in Appendix A):

Proposition B.1. The following holds:

Π̂(X,W ) = δNW − W

(1 + ρ)N
− δV̂1(x̂1, ŵ1), (A.25)

where V̂1(x̂1, ŵ1) is determined by the dynamic program: for 1≤ n≤N ,

V̂n(x̂n, ŵn) = min
yn

{
ρcyn + ρdE

[
(ξn− yn)+

]
+ (γn(ρ)− ρc)min

{
(yn− x̂n)+, ŵn

}
+(ρs− ρc)(yn− x̂n− ŵn)+ + δE

[
V̂n+1(x̂n+1, ŵn+1)

]}
, (A.26)

V̂N+1(·, ·) = 0,

with γn(ρ) = δN−n(1 +ρ)N−n+1− 1, x̂1 =X, ŵ1 = (1 +ρ)−NW , and x̂n+1 and ŵn+1 given in (A.22)

to (A.23).
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Proof. Similar to the proof of Proposition 1, we write the discounted cash balance in the interest

account according to the following sum of discounted incremental cash balances of each period:

δNE[ûN+1] = û1 +
N∑
n=1

δn−1E [δûn+1− ûn] =
N∑
n=1

δn−1E [δûn+1− ûn] .

Substituting the expressions of ûn+1 into the right-hand side yields

N∑
n=1

δn−1E [δûn+1− ûn]

=δ
N∑
n=1

δn−1E
[
−ρd(ξn− yn)+ + ρc(x̂n− yn)+− ρs(yn− x̂n− ŵn)+ + (ρ− ρc)

[
ŵn− (yn− x̂n)+

]+]
.

Note that, [ŵn− (yn− x̂n)+]
+

= ŵn− (yn− x̂n)+ + (yn− x̂n− ŵn)+.

As we have shown in the proof of Proposition 1,

(ρ− ρc)ŵn

=(ρ− ρc)(1 + ρ)n−1ŵ1− (ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i(yi− x̂i)+ + (ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i(yi− x̂i− ŵi)+.

Substituting the above expression back, we have

N∑
n=1

δn−1E [δûn+1− ûn]

=δ
N∑
n=1

δn−1
{
−ρdE(ξn− yn)+ + ρc(x̂n− yn)+− ρs(yn− x̂n− ŵn)+ + (ρ− ρc)ŵn

−(ρ− ρc)[(yn− x̂n)+− (yn− x̂n− ŵn)+]
}

=δ
N∑
n=1

δn−1
{
−ρdE(ξn− yn)+ + ρc(x̂n− yn)+− ρs(yn− x̂n− ŵn)+ + (ρ− ρc)(1 + ρ)n−1ŵ1

−(ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i(yi− x̂i)+ + (ρ− ρc)
n−1∑
i=1

(1 + ρ)n−i(yi− x̂i− ŵi)+

−(ρ− ρc)[(yn− x̂n)+− (yn− x̂n− ŵn)+]
}

=

[
δN − 1

(1 + ρ)N

]
W

− δ
N∑
n=1

δn−1
{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn− x̂n)+, ŵn

}
+ (ρs− ρc)(yn− x̂n− ŵn)+

}
.

Therefore, we can obtain the following equivalent cost minimization problem: for n= 1,2, · · · ,N ,

V̂n(x̂n, ŵn) =min
yn

{
ρcyn + ρdE(ξn− yn)+ + (γn(ρ)− ρc)min

{
(yn− x̂n)+, ŵn

}
+(ρs− ρc)(yn− x̂n− ŵn)+ + δE

[
V̂n+1(x̂n+1, ŵn+1)

]}
,

with γn(ρ) = δN−n(1 + ρ)N−n+1 − 1, x̂1 = X, ŵ1 = (1 + ρ)−NW . Plugging it into the objective

function Π̂(X,W ), we have Π̂(X,W ) = δNW − W
(1+ρ)N

− δV̂1(x̂1, ŵ1). �



Chen, Yan, and Ding: Optimal Cash Management with Payables Finance 37

In the objective function Π̂(X,W ) in Proposition B.1, the first two terms (δNW − W
(1+ρ)N

) capture

the interest gain if withdrawing from payables finance until the payment due date; and the last

term δV̂1(x̂1, ŵ1) is the discounted cost due to cash flow uncertainty. The difference of Π̂(X,W )

from (4) in Proposition 1 is that, in the decoupling cash balance model, only the cash balance

in the separate interest account is taken into consideration in the objective function. Besides, the

dynamic program (A.26) in the decoupling cash balance model is the same as the dynamic program

(5) in the integrated cash balance model, except for the period-to-period cash balance transitions.

Based on the problem (A.26), we can characterize its optimal cash policy, which we refer to as the

“decoupling cash policy” and is summarized in the following proposition.

Proposition B.2. For any 1≤ n≤N , the optimal cash policy ŷ∗n for the decoupling cash balance

model is given by

ŷ∗n =



L= F−1
(
ρd−ρs
ρd

)
if x̂n + ŵn <L,

x̂n + ŵn if L≤ x̂n + ŵn < M̂n,

ŷMn (x̂n + ŵn) if x̂n < M̂n ≤ x̂n + ŵn,

x̂n if M̂n ≤ x̂n <U,

U = F−1
(
ρd−ρc
ρd

)
if x̂n ≥U,

where

ŷMn (x̂n + ŵn) =arg min
yn

{γn(ρ)yn− (γn(ρ)− ρc)x̂n + ρdE
[
(ξn− yn)+

]
+ δE

[
V̂n+1(yn− ξn, (1 + ρ)(ŵn + x̂n− yn))

]
},

and M̂n = min{x̂n + ŵn | ŷMn (x̂n + ŵn) = x̂n + ŵn}, with L< M̂n(x̂n, ŵn)<U .

Proof. The proof is similar to Proposition 6 in the approximate system. The only difference is

that the optimal middle cash level ŷMn (x̂n + ŵn) in the decoupling model depends on the cash bal-

ances. To see this, we first write the state transition equations (A.22) and (A.23) in the decoupling

model as

x̂n+1 =


x̂n− ξn if yn ≤ x̂n,

yn− ξn if x̂n < yn ≤ x̂n + ŵn,

x̂n + ŵn− ξn if yn > x̂n + ŵn;

(A.27)

ŵn+1 =


(1 + ρ)ŵn if yn ≤ x̂n,

(1 + ρ)(ŵn + x̂n− yn) if x̂n < yn ≤ x̂n + ŵn,

0 if yn > x̂n + ŵn.

(A.28)

We can find that in the cases of yn ≤ x̂n and yn > x̂n + ŵn, both x̂n+1 and ŵn+1 are independent of

yn. As a result, their corresponding optimal cash levels are U = F−1
(
ρd−ρc
ρd

)
and L= F−1

(
ρd−ρs
ρd

)
.
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However, in the case of x̂n < yn ≤ x̂n + ŵn, the total cash balance x̂n+1 + ŵn+1 is a function of yn,

x̂n, and ŵn. This implies that the first-order derivative of E
[
V̂n+1(x̂n+1, ŵn+1)

]
with respect to yn

in the second case depends on the cash balances x̂n, and ŵn. It follows that the optimal middle

cash level ŷMn (x̂n + ŵn) depends on both x̂n, and ŵn. �


